
IE 613: Survey of Dueling Bandits

Anshul Nasery (170070015)
Rishabh Dahale (17D070008)
Mithilesh Vaidya (17D070011)

May 2019

1 Introduction

Conventional online learning settings require absolute feedback for each action (in the form
of a reward or loss). However, in some cases, such feedback is not possible. E.g. search
engine suggestions and their click-through-rate only tell us which action was preferred over
the other. There is no absolute measure (such as how strongly was the clicked suggestion
preferred over the ignored one). The Dueling Bandits framework solves this problem by
assuming only the presence of feedback about the relative quality of each pair of actions.
The aim of this project is a survey of various algorithms used in the Dueling Bandit setting.
This report is organised in the following manner:
We first introduce Dueling Bandits in Section 2 and define various terms used in describing
the environment and the algorithm’s performance. Section 3 contains the list of algorithms
along with a brief description of each algorithm. They are compared with each other in the
same environment and the results are mentioned in Section 4 and Section 5.

2 Definition

In several real world applications, decisions need to be taken based on feedback from com-
parison between pairs of actions. Dueling bandits try to model this problem.

In the Dueling Bandits problem, the following happens for each time step t = 1, ..., T :

• The algorithm chooses a pair of actions ai and aj from K available actions

• The world provides (independent stochastic) preference feedback of which action is
more preferred. The first action is preferred with probability P (ai � aj), and the
second with 1− P (ai � aj)

In this setting, assuming that the first arm a1 is the best arm, regret is defined as

R(T) =

T∑
t=1

∆1i + ∆1j

where ∆1i represents P (a1 � ai)
Another definition associated with the problem is that of a winner arm. An arm ai is

said to be a Condorcet winner if for all other arms aj ,

[P (ai � aj) ≥ P (aj � ai)]

1

3 Algorithms

Several algorithms have been proposed for the Dueling Bandit setting.
We studied and simulated the following:

3.1 Interleaved Filter [1]

This is an explore-then-exploit type of an algorithm. In the explore phase, all the arms
are compared with a candidate arm in a round robin fashion, and they are discarded from
the set if the candidate arm is better than them with a certain level of confidence. If some
other arm is better than the candidate arm within a confidence bound, it becomes the
new candidate arm. Once only one arm remains in the set to be considered, the algorithm
enters the exploit phase, repeatedly pulling this arm. The algorithm has a regret bound of
O(K logK

ε12
log T) . However, the variance of the regret is high due to the fact that arms are

rapidly eliminated w.r.t the candidate arm.

3.2 Beat The Mean [2]

The algorithm maintains a working W for wach round, and looks at the probability of each
bandit belonging to W to beat the mean bandit. It chooses the bandit with the least pulls
and compares it with the mean bandit. The mean bandit is simulated by selecting one
of the bandits uniformly. Once the empirical probabilities of the best and worst bandit
are separated by a confidence level, the worst bandit is removed from W . The algorithm
is often found to be slow to converge, especially for a larger number of arms, since the
exploration strategy is akin to uniform exploration, and the confidence bounds often mean

2

that W remains unchanged for a long time. The theoretical bound on regret is proved to

be O
(

ΣKk=2
γ8

η1,k
logT

)

3.3 Relative Minimum Empirical Divergence [3]

This is a state of the art algorithm which achieves the optimal asymptotic regret bound.
The algorithm computes the empirical KL divergence Ii(t) as

Ii(t) =
∑

j∈Oi(t)

Ni,j(t)d(ˆµi,j(t),
1

2
)

, where Oi(t) is the set of arms whose probability of beating ai is less than 0.5. It considers
exp(−Ii(t)) to be the likelihood of an arm being the optimal arm, uses this to decide which
arm to compare next.

3

3.4 Doubler [4]

The Stochastic Multi-Armed Bandit(SMAB) has been widely studied over the last few
decades. We can benefit from this research if we can convert the Dueling Bandit problem
into a MAB setting. The Doubler algorithm works by treating the MAB algorithm as a
’blackbox’ and interacts with it using three functions:

• Reset: Clears all the weights

• Advance: Play an arm

• Feedback: Supply reward to the black box for updating it’s weights

4

Any standard MAB algorithm can be used. We used UCB since it gives good perfor-
mance without large performance overheads. Doubler proceeds in epochs of exponentially
increasing size (hence “doubler”). In each epoch, the left arm is sampled from a fixed distri-
bution, and the right arm is chosen using the MAB black-box to minimise regret against the
left arm. The feedback sent to the blackbox is the wins and losses the right arm encounters
when compared against the left arm. In other words, the goal of the right arm is to beat the
fixed distribution from which the left arm is sampled. The distribution the left arm plays
is the empirical distribution (histogram) of arms that were chosen for the right arm in the

previous epoch. The regret bound for doubler is proved to be O
(
c α
α+1 log

α+1T
)

3.5 SAVAGE [5]

Sensitivity Analysis of Variables for Generic Exploration (SAVAGE) is a popular algorithm
which outperforms most when the number of arms is moderate. It can be briefly explained
in the following manner:
It compares pairs of arms in a round-robin fashion and drops arms from consideration when
they meet a particular criterion. Since the Condorcet assumption is valid, an arm which
loses to others with high probability can be safely dropped since it cannot be the winner.

5

3.6 RUCB [6]

The main idea of RUCB is to maintain optimistic estimates of the probabilities of all possible
pairwise outcomes, and

1. use these estimates to find an arm that has a chance of being the best arm (potential
champion)

2. select an arm to compare to this potential champion by performing regular UCB

6

RUCB starts from putting all the arms in a pool of potential champions, and then starts
comparing every arm against every other arm optimistically. If the arm i, the upper bound
uij(t) = µij(t) + cij(t) satisfies uij(t) < 0.5 then the arm i is removed from the potential
champions. The term µij(t) defines the frequentist bonus at time t. It can be also considered
as the measure of exploitation performed by an arm. The term cij(t) is called as optimism
bonus that increases with time t and decreases with number of comparisons between arms
i and j. This is performed until we get a single best arm, which by the assumption of
Condorcet winner is always present.

In short RUCB can be summed in two steps. First is the optimistic comparison of an
arm with other arms, making it easier for it to become a champion. And second is the
pessimistic comparison of an arm against others, making it more difficult for an arm to
be compared against itself. This is important because comparing an arm with itself yields
no information. Thus RUCB tries to avoid auto-comparison until there is great certainty
that the chosen arm is indeed the Condorcet winner. The regret for RUCB is proved to be
O (KlogT)

7

3.7 RCS [7]

RCS (Relative confidence sampling) proceeds in two phases to determine which ranker to
interleave at each iteration. First, it use the results of the comparisons conducted so far
to simulate a round-robin tournament among the rankers. Second, the champion of this
tournament is compared against a challenger deemed to have the best chance of beating it.
As more comparisons are conducted, the best ranker is increasingly likely to be selected as
both champion and challenger, causing regret to fall steeply over time.

While RCS is related to RUCB, which is also designed for the ongoing regret minimisation
setting, it differs in one crucial respect: the use of sampling when conducting a round-robin
tournament to select a champion. The goal in doing so is to exploit one of the key lessons that
has been learned in the study of regular K-armed bandits: that much better performance
can be obtained by maintaining posterior distributions over the expected value of each
ranker and sampling from those posteriors to determine which ranker to select. RCS has
one parameter α which controls how exploratory the algorithm’s behaviour is: higher value
of α means the more the algorithm explores and slower it settles on a single ranker. The
RCS maintains a scoresheet W, which records the comparision result and proceeds in two
phases:

• A tournament is simulated based on current scoresheet, i.e. samples Θij are collected
for each pair of ranker (i, j) with i > j, from a posterior beta distribution maintained
on pij . Also since pji = 1 − pij , RCS sets Θji = 1 − Θij . Also it sets Θii = 0.5
as pii = 0.5. From these sampled results, ranker i beats ranker j in the simulated

8

tournament if Θij >
1
2 for i 6= j. At this stage there are two possibilities: First, there

is a champion ranker c that beats all other rankers in this tournament i.e. Θcj ≥ 1
2 .

Second, no ranker beats all other ranker, in which case RCS sets c = argminiNi where
Ni is the number of times arm i has been previously chosen as champion. Eventually
once the condorcet winner has been compared against the rest of the rankers often
enough, it’s superiority over the rest will cause their eliminating in this phase of the
algorithm.

• The UCB algorithm is applied to the K-armed bandit problem with means {p1c , ..., pkc}.
RCS picks the ranker d for which udc is higher than all other ujc

Finally rankers c and d are compared against each other using a real interleaved comparison
and W is updated accordingly.

4 Experimental Results

We experimented on 4 datasets - 2 synthetic and 2 real-world
Reference for both synthetic datasets is [10]

• Synthetic with K = 5 - Best arm is the first arm.

• Synthetic with K = 10 - It is generated by using the rule:
µi,j = 0.5 + 0.05(j − i). Best arm in the case is the first arm.

The real-world datasets are the MSLR dataset [9] and car preference dataset [8]

• MSLR - K = 5 - First arm is the best arm. It is generated by considering the prefer-
ences of users ranking features for URLs while using the search engine Bing! The raw
dataset had relative rankings of each feature per user.

• Car preference - K = 10 - First arm is the best arm. It is generated by considering
the user preferences for various models of cars. The raw dataset features comparisons
between 2 cars for each user, so it could be directly formulated as a dueling bandit
problem.

Let δ(env) denote difference between the highest mean and the next highest mean. From
the datasets, we can conclude that:
δ(Artificial,K = 5) < δ(Real,K = 10) < δ(Artificial,K = 10) < δ(Real,K = 5).
In the following work, we will refer to it as the ’sub-optimal gap’

The results are given below. 50 samples of each algorithm are taken to average out the
noise. Note that both regret and horizon are plotted on a log scale.

9

(a) MSLR dataset with K = 5 (b) Synthetic dataset with K = 5

Figure 1: For K = 5

(a) Car preference dataset with K = 10 (b) Synthetic dataset with K = 10

Figure 2: For K = 10

Given below are the plots for each algorithm:

10

(a) Interleaved Filter (b) Beat the Mean (BTM)

(c) RMED1 (d) RMED2

(e) Doubler (f) SAVAGE

(g) RUCB (h) RCS

11

5 Discussion

• For all the algorithms surveyed, the MSLR dataset yielded the least cumulative regret
and converged the quickest consistently. This is because the dataset has arms with
well separated means, which makes it ’easier’ to learn than the synthetic dataset
with 5 arms. It indicates that the sub-optimal gap is the most important factor in
determining the performance.

• In case of Interleaved Filter, arms are eliminated only if their probability of being the
best arm is outside a certain confidence interval. The artificial dataset has pairs of arms
having close means, and this means that separating these two with a high confidence
takes a higher number of rounds. Hence, it’s regret is inversely proportional to the
sub-optimal gap.

• For the RMED algorithm, the empirical divergence forces the number of comparisons
between the top two arms to be low for the artificial dataset and hence takes time to
converge when sub-optimal gap is low

• Doubler performs poorly under all settings because it takes time to converge. The set
of left arms always contains all the arms since it takes time for the confidence bounds
to shrink. Since shrinking of confidence bounds is heavily dependant on the means,
lesser differences in means leads to higher regret, as shown in the plots.

• BTM also fails to achieve sub-linear regret because the set W of contesting arms often
remains unchanged due to uniform exploration, especially when the number of arms
is large.

• Of all the algorithms surveyed, RUCB and RCS’s regret grows the slowest. Also, since
the regret is sharply bounded by Klog(T), the regret noticeably increases as we go
from K = 5 to K = 10.

We can summarise the above discussion by mentioning the best algorithm in each environ-
ment as follows: (δ denotes sub-optimal gap)

Small K Large K
Small δ RUCB/RCS RMED
Large δ RUCB/RCS RMED

12

References

[1] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed du-
eling bandits problem. Journal of Computer and System Sciences, 2012.

[2] Yisong Yue and Thorsten Joachims. Beat the mean bandit. In ICML, 2011.

[3] Junpei Komiyama, Junya Honda, Hisashi Kashima, and Hiroshi Nakagawa. Regret lower
bound and optimal algorithm in dueling bandit problem. In COLT, 2015.

[4] [Ailon et al., 2014] Nir Ailon, Zohar Karnin, and Thorsten Joachims. Reducing dueling
bandits to cardinal bandits. In ICML, 2014.

[5] [Urvoy et al., 2013] Tanguy Urvoy, Fabrice Clerot, Raphael Feraud, and Sami Naamane.
Generic exploration and k-armed voting bandits. In ICML, 2013.

[6] Masrour Zoghi, Shimon Whiteson, Remi Munos, and Maarten de Rijke. Relative upper
confidence bound for the k-armed dueling bandit problem. In ICML, 2014.

[7] Masrour Zoghi, Shimon Whiteson, Maarten de Rijke, and Remi Munos. Relative confi-
dence sampling for efficient on-line ranker evaluation. In WSDM, 2014.

[8] Car preference dataset

[9] MSLR Dataset

[10] Regret Lower Bound and Optimal Algorithm in Dueling Bandit Problem

13

https://www.cs.cornell.edu/people/tj/publications/yue_etal_09a.pdf
https://www.cs.cornell.edu/people/tj/publications/yue_etal_09a.pdf
https://www.cs.cornell.edu/people/tj/publications/yue_joachims_11a.pdf
https://arxiv.org/pdf/1506.02550.pdf
https://arxiv.org/pdf/1506.02550.pdf
https://arxiv.org/pdf/1405.3396.pdf
https://arxiv.org/pdf/1405.3396.pdf
http://proceedings.mlr.press/v28/urvoy13.pdf
http://proceedings.mlr.press/v28/urvoy13.pdf
http://proceedings.mlr.press/v32/zoghi14.pdf
http://proceedings.mlr.press/v32/zoghi14.pdf
http://www.cs.ox.ac.uk/people/shimon.whiteson/pubs/zoghiwsdm14.pdf
http://www.cs.ox.ac.uk/people/shimon.whiteson/pubs/zoghiwsdm14.pdf
http://users.cecs.anu.edu.au/~u4940058/CarPreferences.html
http://research.microsoft.com/en-us/projects/mslr/
https://arxiv.org/pdf/1506.02550.pdf

	Introduction
	Definition
	Algorithms
	Interleaved Filter ifpaper
	Beat The Mean btmpaper
	Relative Minimum Empirical Divergence rmedpaper
	Doubler doublerpaper
	SAVAGE savagepaper
	RUCB rucbpaper
	RCS rcspaper

	Experimental Results
	Discussion

