CS726 Project Legendre Memory Units

Siddharth Chandak Syomantak Chaudhuri Mithilesh Vaidya Abhishek Tanpure Vaidehi Patil 17D070019 170070004 17D070011 17D070018 170110012

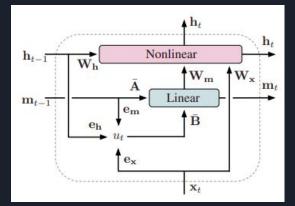
Tasks

- To understand, implement and analyze the performance of Legendre Memory Units on various datasets
- Suggest improvements/modifications to LMUs

What is LMU?

- A memory cell for RNNs that stores information across long windows of time
- Mathematical basis: Padé approximants for exponentials and Legendre polynomials [2]
- Shown to outperform LSTMs in some cases

$$\begin{split} \mathbf{A} &= [a]_{ij} \in \mathbb{R}^{d \times d}, \quad a_{ij} = (2i+1) \begin{cases} -1 & i < j \\ (-1)^{i-j+1} & i \ge j \end{cases} \\ \mathbf{B} &= [b]_i \in \mathbb{R}^{d \times 1}, \quad b_i = (2i+1)(-1)^i, \quad i, j \in [0, d-1]. \end{split}$$



Innovations

Mathematical

- Deriving new matrices A & B based on intuition
- Bernstein Memory Units
- Padé Memory Units
- Euler-Legendre Memory Units

Architectural

- Modifying the architecture based on observations
- Linear Legendre Memory Units
- Trainable Memory Units

We tried several modifications but will focus on only two of them.

Bernstein Memory Units (BMU)

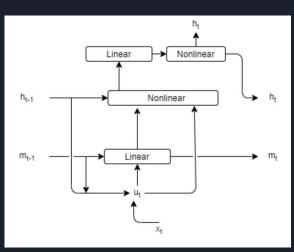
- Motivation Justification behind using Legendre very weak
- Bernstein Polynomials Another set of basis polynomials
- Popular for the proof of Weierstrass Approximation Theorem
- Simpler than Legendre polynomials
- Derived transformation matrix *M* based on derivation of LMU and the relation between Legendre and Bernstein polynomials [3]

$$A_b = M A_l M^{-1}$$

$$B_b = MB_l$$

Linear Legendre Memory Units

- Motivation: A linear layer after the output of LMU drastically improves the performance
- Use a linear and a nonlinear layer for the next hidden state as well



Experiments

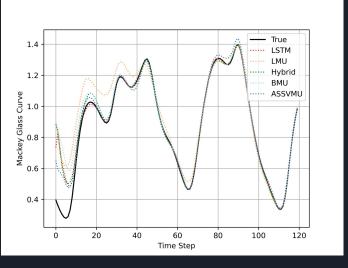
- Mackey Glass Equation
- Sequential/Permuted Sequential MNIST
- Capacity task
- PennTreebank Character Modeling*
- JSB Chorales*
- LAMBADA dataset*

(*Additional tasks commonly used to benchmark performance of sequence modeling architectures [4])

(Our Code: https://github.com/CyanideBoy/LegendreMemoryUnits)

Mackey Glass

- MG equation Parameterized differential equation
- Input Sequence of points generated by the MG equation
- Model has to predict 15 time steps into future
- Network contains 4 stacked layers of LMU, or, LSTM, or, hybrid model
- BMU Best middle ground



Model	Test NRMSE	Training Time (s/epoch)
LSTM	0.044	25.45
LMU	0.056	<u>13.2</u>
BMU	<u>0.044</u>	<u>17.84</u>
Linear LMU	<u>0.041</u>	21.77
Hybrid	0.044	22.94

psMNIST

- Digit classification task
- Images from MNIST flattened into a 1-D array and permuted
- Pixels are provided at a time and model has to predict digit
- LMU and Linear LMU significantly outperform LSTM
- BMU couldn't be trained successfully

Model	Test Accuracy
LSTM	86.7%
LMU	<u>96.39%</u>
BMU	77.9%
Linear LMU	95.26%

JSB Chorales

- Dataset <u>http://www-etud.iro.umontreal.ca/~boulanni/icml2012</u>
- Input Sequence of multiple piano key presses at each time instant
- Have to predict piano key presses at next time instant
- Variant of multilabel classification with cross entropy loss
- BMU and LLMU clearly outperform both LSTM and LMU

Model	Test Loss
LSTM	10.8329
LMU	10.5413
BMU	<u>10.4623</u>
Linear LMU	<u>10.2347</u>

PennTreebank Character Modeling

- Large corpus of english text: <u>https://catalog.ldc.upenn.edu/LDC99T42</u>
- Each character is encoded as a one-hot vector and fed to model as input
- Have to predict next character
- Trained using cross-entropy loss
- LSTM slightly outperforms the memory units

Model	Test Loss
LSTM	<u>2.932</u>
LMU	2.957
BMU	2.957
Linear LMU	2.957

LAMBADA

• Dataset -

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

• Includes 10K passages extracted from novels, with an average of 4.6 sentences as context, and 1 target sentence the last word of which is to be predicted

Model	Test Loss
LSTM	11.38
LMU	<u>10.88</u>
BMU	11.44
Linear LMU	11.15

Conclusions

- Linear LMU outperforms LMU Increasing the complexity of the architecture further may help improve results
- Similar performance by BMU and LMU not clear if LMU is the best extension of Pade approximants
- No one-fit-all model Performance varies across different tasks

References

- 1. Legendre Memory Units: Continuous-Time Representation in RNNs (<u>https://papers.nips.cc/paper/2019/file/952285b9b7e7a1be5aa7849f32ffff05-Paper.pdf</u>)
- Dynamical Systems in Spiking Neuromorphic Hardware (<u>https://uwspace.uwaterloo.ca/bitstream/handle/10012/14625/Voelker_Aaron.pdf?sequence=4&is_Allowed=y</u>)
- 3. Legendre–Bernstein basis transformations, Rida T. Farouki, Journal of Computational and Applied Mathematics, Volume 119, Issues 1–2, 2000
- 4. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling (<u>https://arxiv.org/pdf/1803.01271.pdf</u>)
- 5. Codes from [4]: https://github.com/locuslab/TCN
- 6. Codes from [1]: https://github.com/nengo/keras-lmu

Appendix

 $M_{jk} = \frac{1}{\binom{n}{i}} \sum_{i=\max(0,j+k-n)}^{\min(j,k)} (-1)^{k+i} \binom{k}{i} \binom{k}{i} \binom{n-k}{j-i}$ $M_{jk}^{-1} = \frac{2j+1}{n+j+1} \binom{n}{k} \sum_{i=0}^{j} (-1)^{j+i} \frac{\binom{j}{i} \binom{j}{i}}{\binom{n+j}{k+i}}$