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Tasks

● To understand, implement and analyze the performance of 

Legendre Memory Units on various datasets

● Suggest improvements/modifications to LMUs 



What is LMU?

● A memory cell for RNNs that stores information across long 

windows of time

● Mathematical basis: Padé approximants for exponentials and 

Legendre polynomials [2]

● Shown to outperform LSTMs in some cases

Images reproduced from [1]



Innovations

Two Perspectives

Mathematical
● Deriving new matrices A & B based 

on intuition
● Bernstein Memory Units
● Padé Memory Units
● Euler-Legendre Memory Units

Architectural
● Modifying the architecture based 

on observations
● Linear Legendre Memory Units
● Trainable Memory Units

We tried several modifications but will focus on only two of them.



Bernstein Memory Units (BMU)

● Motivation - Justification behind using Legendre very weak

● Bernstein Polynomials - Another set of basis polynomials

● Popular for the proof of Weierstrass Approximation Theorem

● Simpler than Legendre polynomials

● Derived transformation matrix M based on derivation of LMU and 

the relation between Legendre and Bernstein polynomials [3]



Linear Legendre Memory Units

● Motivation: A linear layer after the output of LMU drastically 

improves the performance

● Use a linear and a nonlinear layer for the next hidden state as well



Experiments

● Mackey Glass Equation

● Sequential/Permuted Sequential MNIST

● Capacity task

● PennTreebank Character Modeling*

● JSB Chorales*

● LAMBADA dataset*

(*Additional tasks commonly used to benchmark performance of sequence modeling 

architectures [4])

(Our Code: https://github.com/CyanideBoy/LegendreMemoryUnits)

https://github.com/CyanideBoy/LegendreMemoryUnits


Mackey Glass

● MG equation - Parameterized differential equation

● Input - Sequence of points generated by the MG equation

● Model has to predict 15 time steps into future

● Network contains 4 stacked layers of LMU, or, LSTM, or, hybrid model

● BMU - Best middle ground

Model Test NRMSE Training Time 
(s/epoch)

LSTM 0.044 25.45

LMU 0.056 13.2

BMU 0.044 17.84

Linear LMU 0.041 21.77

Hybrid 0.044 22.94



psMNIST

● Digit classification task

● Images from MNIST flattened into a 1-D array 

and permuted

● Pixels are provided at a time and model has to 

predict digit

● LMU and Linear LMU significantly outperform 

LSTM

● BMU couldn’t be trained successfully

Model Test Accuracy

LSTM 86.7%

LMU 96.39%

BMU 77.9%

Linear LMU 95.26%



JSB Chorales

● Dataset - http://www-etud.iro.umontreal.ca/~boulanni/icml2012

● Input - Sequence of multiple piano key presses at each time instant

● Have to predict piano key presses at next time instant

● Variant of multilabel classification with cross entropy loss

● BMU and LLMU clearly outperform both LSTM and LMU
Model Test Loss

LSTM 10.8329

LMU 10.5413

BMU 10.4623

Linear LMU 10.2347

http://www-etud.iro.umontreal.ca/~boulanni/icml2012


PennTreebank Character Modeling

● Large corpus of english text: 

https://catalog.ldc.upenn.edu/LDC99T42

● Each character is encoded as a one-hot 

vector and fed to model as input

● Have to predict next character

● Trained using cross-entropy loss

● LSTM slightly outperforms the memory 

units 

Model Test Loss

LSTM 2.932

LMU 2.957

BMU 2.957

Linear LMU 2.957

https://catalog.ldc.upenn.edu/LDC99T42


LAMBADA

● Dataset - 

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

● Includes 10K passages extracted from novels, with an 

average of 4.6 sentences as context, and 1 target 

sentence the last word of which is to be predicted

Model Test Loss

LSTM 11.38

LMU 10.88

BMU 11.44

Linear LMU 11.15

https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC


Conclusions

● Linear LMU outperforms LMU - Increasing the complexity of the 

architecture further may help improve results

● Similar performance by BMU and LMU - not clear if LMU is the 

best extension of Pade approximants

● No one-fit-all model - Performance varies across different tasks
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