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Abstract—Audio steganography is a technique for concealing
the existence of information by embedding it within non-secret
audio, called the carrier audio signal. There is a trade-off between
the amount of information encoded and the imperceptibility of
the change in the encoded audio. In this work, we implement
a deep-learning based audio steganography technique. An ASR
model is trained on the TIMIT dataset. We exploit the susceptibil-
ity of the trained model to adversarial examples. Given an input
recording and a list of phones to encode, the technique searches
for a small imperceptible perturbation. When this perturbation
is added to the original audio and passed through the model, we
recover the encoded text as the ASR output. PESQ score is used
as the evaluation metric to quantify the amount of degradation.
We also study the time required for encoding the text as a
function of it’s length, nature and PESQ. Lastly, we study the
effect of a Gaussian Noise channel on our encoding technique.

I. INTRODUCTION

Due to rapid adoption of internet among the public and
easy and abundant availability of digital data, there is a
growing demand for data protection. Currently, the popular
methods are cryptography, watermarking and steganography.
In cryptography, the structure of a message is scrambled to
make it meaningless unless a decryption key is available
whereas in watermarking the information is hidden to convey
information like copyright and ownership. Steganography does
not alter the structure of the message, but hides information
so that it cannot be seen. It prevents an unintended recipient
from even suspecting that data exists.

Audio steganography is useful for transmitting sensitive
information hidden in an audio signal. Audio signals provides
a lot of redundant space for embedding hidden information
and have a good imperceptibility in the transmission of in-
formation. Two main criteria for successful embedding of a
concealed message are:

1) Resulting audio signal should be perceptually indistin-
guishable from host audio signal.

2) Embedded message can be successfully recovered.
Traditional audio information hiding techniques can be

classified into two major categories: time domain based and
frequency domain based. Time domain techniques embed
information on the carrier in time domain. They generally
have large hiding capacity and low imperceptibility. Examples
of such techniques are hiding information in LSB (least
significant bit) [2], spread spectrum [3] and echo hiding [4].

Frequency domain techniques generally modify the transform
domain to hide information. Such techniques generally posses
high imperceptibility but low poor hiding capacity. Such tech-
niques generally make use of discrete cosine transform (DCT),
phase coding [5] and discrete wavelet transform (DWT) [6].

This work is based on a paper by Kong et al. [1] in
which the authors used a DNN-based ASR model to hide
information in the audio signal by adding small deviations
in time domain. We implement their algorithm and carry
out various experiments to study the tradeoff between hiding
capacity, imperceptibility and nature of encoded text. We also
test the ability of the model to learn an optimal perturbation
in presence of Gaussian noise. Finally, we extend this work
by presenting preliminary results of a similar method in the
frequency domain. The main reason for studying this technique
is to bring in psycho-acoustic concepts e.g. encoding the
perturbation is specific regions along the frequency to ensure
imperceptibility is high. This could lead to better PESQ scores.

II. METHODOLOGY

A. ASR model

We train a simple convolutional-recurrent neural network for
the ASR task. The architecture is given in figure 1. The model
accepts log spectrogram as input and outputs a distribution
over 48 phones at each time step. The model is trained using
CTC loss. We train, validate and test on the TIMIT dataset.
Note that once the model is trained, the weights are frozen.

B. Encoding

1) Sample-based: Given an input recording in time domain
(x) and a list of phones to encode (t), we follow the encoding
procedure shown in figure 2. We search for a perturbation δ
such that f(x + δ) = t where f(.) denotes the final output
of the ASR model after CTC decoding. We need to also
ensure that the perturbation remains imperceptible. One way
to achieve this is to minimise the amplitude of δ or in other
words, the L∞ norm. Thus, our goal becomes:

δ = argmin
k
‖k‖∞ s.t. f(x+ k) = t

Note that minimising the L∞ norm need not necessarily
give the best PESQ score (our evaluation metric). This is
something we plan to study in the future.



Fig. 1. Architecture of the ASR model trained on TIMIT.

Refer to Algorithm 1 for the pseudo-code. We initialise
δ to 0. The maximum deviation τ is set to the maximum
value of the audio signal. For every iteration, we feed the log
spectrogram of the perturbed audio to the ASR model and
obtain the phone distribution at each time step. The CTC loss
with respect to the text to encode t is calculated. Our goal
is to minimise this loss so that on decoding, we recover t.
When the decoded text matches the target text, we decay τ
by a predefined constant factor γ. This step ensures that the
perturbation keeps getting smaller in amplitude as iterations
increase.

At every time step, we use the Adam optimiser to update δ.
Also, δ is clipped so that it lies between the maximum allowed
amplitude τ in magnitude.
We use PESQ as the evaluation metric. It quantifies the amount
of degradation with respect to the original clean audio. The
quantification is based on various human hearing attributes.
We report PESQ whenever the decoded text matches the target
text.

Fig. 2. The process of embedding the hidden text in the given audio signal.
Figure reproduced from the main reference [1]

2) Spectrogram-based: Instead of calculating a perturbation
in the time domain, we can also look for perturbations in
the log spectrogram domain. The perturbed audio can be
recovered by inverting the log spectrogram. As far as number
of parameters are concerned, framing reduces them by a factor
of 100 along time (assuming a hop size of 10 ms) but an

Algorithm 1: Estimating δ
Input : Original signal x, Text to encode t
Output: Perturbation δ
Initialise: δ = best = 0;
Parameters: γ - decay factor, N - max iterations
τ = max(x) - amplitude of perturbation
for i = 1, 2, ..., N do

input = logspectrogram(x + δ)
output = model(input)
//Calculate loss
L = CTCLoss(output, t)
//Decode
pred = decode(output)
//Check if prediction matches target
if pred == t then

//Store current best
best = δ
//Decay the allowed amplitude
τ ← τ ∗ γ

end
//Update delta
δ ← Adam.minimise(L,δ)
δ = clip(δ,−τ, τ)

end
return best

N-point FFT increases them by a factor N. Thus, if N >
100, the number of parameters increases. However, we can
exploit the psycho-acoustic properties to encode information
in specific regions of the spectrogram [7], [9]. We could use a
more nuanced loss function which is inspired by properties of
the human hearing system e.g. deviations at higher frequencies
are less perceptible as compared to those at lower frequencies.
This could potentially lead to better PESQ scores since PESQ
and amplitude of the perturbation need not always show an
inverse relationship. The algorithm for computing the pertur-
bation is very similar to algorithm 1. We used the Griffin-Lim



inversion algorithm found in the torchaudio library to invert
the perturbed spectrogram.

C. Decoding

For extracting the encoded text, we simply pass the per-
turbed audio through our ASR model. After CTC decoding,
we recover the text. It has been observed that passing the
perturbed signal through any other ASR model (different
architecture or same architecture with different weights) does
not give the encoded text as output [1]. In other words, the
perturbation is highly sensitive to the model weights and hence
the encoding technique is very secure.

III. EXPERIMENTS

A. Details

We deal with audio files sampled at 16 KHz. Log spectro-
gram of this audio, sampled using a Hann window of width
20ms and hop size of 10ms is given as input to the ASR
model. The model consist of 2 layers of CNN followed by
4 layers of bidirectional GRU. Both the CNN layers use 32
filters with kernel size (5, 32). The first layer has a stride of
1, while the second layer has a stride of 2. Both the layers use
ReLU activation function. Dropout probability of 0.4 is used
in both the CNN layers. This is followed by a 256 dimensional
bidirectional GRU whose outputs are finally passed through a
48 dimensional fully connected layer with Softmax activation.
Phone error rate (PER) of 19.7% was reached when the model
was trained on CTC loss using SGD as the optimizer with a
learning rate of 0.003 and momentum of 0.95. Batch size was
set to 64 and we trained the model for 1000 epochs.

In algorithm 1, τ is initialised to max(x) while decay factor
γ is set to 0.75. We run the algorithm for N = 10,000 iterations.
Every 50 iterations, we check whether the CTC decoded text
matches the target text. If yes, we store the perturbation and
decay the threshold by γ. The learning rate for Adam is set
to 0.01 and we decay it with by a factor of 0.995 every 50
iterations.

B. Results

Figure 3 shows the variation of loss with iterations. The
loss plotted is the CTC loss between the predicted phone
sequence by our ASR model and the target audio. At certain
iterations, a spike in the loss can be observed. This is because
at these iterations, for a given amplitude of perturbation, the
target phone sequence was correctly predicted. As a result, the
amplitude of the perturbation was reduced, resulting in sudden
spike in the loss function.

Fig. 3. Variation of loss b/w predicted phone sequence and target phone
sequence v/s iteration. The carrier audio has the dialogue: ”Now I am become
death, the destroyer of worlds” while the encoded text is ”automatic speech
recognition”.

Table I lists the PESQ for various experiments we carried
on a few audio files. It can be seen that for noisy carriers
(Breaking Bad, Oppenheimer and Lion King which are
obtained from the internet), we were able to achieve a higher
PESQ as compared to the clean audio files from TIMIT. Any
perturbation to a recording from TIMIT is highly perceptible.

Source Sr No Audio
Duration PPS PESQ

WB (best)
PESQ

NB (best)
TIMIT 1 3 6.66 1.7 1.2
TIMIT 2 3 5 1.27 1.04

Breaking Bad 3 11 2.7 3.48 2.4
Breaking Bad 4 11 1.36 3.22 1.95
Oppenheimer 5 4 8 4.39 3.42
Oppenheimer 6 4 1.75 4.52 4.13

Lion King 7 19 5.42 2.79 1.98
Lion King 8 19 0.68 3.67 2.9

TABLE I
RESULTS ON DIFFERENT AUDIO FILES. PPS: PHONES PER SECOND, SR.

NO CORRESPOND TO THE AUDIO-TARGET PAIR SR NO IN TABLE V.
DETAILS ABOUT THE TEXT PRESENT IN THE AUDIO FILES AND THE TEXT

ENCRYPTED IN IT CAN BE FOUND IN V IN APPENDIX A. HIGHER PPS
CORRESPOND TO THE LONGER ENCRYPTED TEXT.

Figure 4 shows the variation of wide band and narrow band
PESQ with number of iterations. Although we ran experiments
for 10,000 iterations, the range of x axis is restricted. This is
because PESQ was noted only when the target phone sequence
was decoded and after a certain iteration, due to gamma decay
of the amplitude of perturbation, no perturbation was found so
as to recover the target sequence after decoding.



Fig. 4. Variation of PESQ v/s iterations

We also ran few of the above experiments by adding Gaus-
sian noise with SNR 10dB to simulate transmission through
a noisy channel. Results can be seen in Table II. When we
compare the results (same carrier audio and encrypted text) in
presence of Gaussian noise with that without (Table I), we can
see a sharp drop in PESQ. This is expected because when we
add noise to the perturbations, it acts as a completely different
perturbation. As a result, it becomes difficult to reduce the
amplitude of original perturbation in order to improve the
PESQ score. Figure 5 compares the PESQ variation with and
without noise for same audio files and target text pair.

Source Sr No Audio
Duration PPS PESQ

WB (best)
PESQ

NB (best)
TIMIT 1 3 6.66 1.42 1.1

Breaking Bad 3 11 2.7 2.13 1.41
Oppenheimer 6 4 1.75 2.17 1.4

TABLE II
PESQ OBTAINED BY ADDING GAUSSIAN NOISE. SR. NO. CORRESPOND TO

THE AUDIO-TARGET SR. NO. IN TABLE V

Fig. 5. Variation of PESQ when encrypted with and without the presence of
Gaussian noise.

Lastly, we encode a random string of phones and check the
PESQ. We found that it is very difficult to encode this random
target. Thus, higher the perplexity of the text to encode, the
more difficult it is to find the right perturbation. This has
important implications for the kind of text that can be encoded.
Check figure 6.

Fig. 6. Trends in PESQ as a function of the nature of encoded text. Proper
text refers to a grammatically-correct English sentence while random refers
to a random string of phones which is encoded.

We also ran some experiments with perturbation in the log
spectrogram domain instead of the time domain (Table III).
When compared to the results of perturbation in time domain,
we can see a degradation in PESQ value. This is because the
phase information of the spectrum is lost, and the Griffin-
Lim inverse transform present in the torchaudio library can
only approximate it. Circumventing this issue is a potential
direction for future work.



Source Sr No Audio
Duration PPS PESQ

WB (best)
PESQ

NB (best)
Oppenheimer 5 4 8 2.52 1.97
Oppenheimer 6 4 1.75 2.97 2.44

TABLE III
RESULTS OF EXPERIMENTS WITH PERTURBATIONS IN LOG SPECTROGRAM.

SR NO CORRESPOND TO THE AUDIO-TARGET PAIR IN TABLE V

IV. CONCLUSION

In this work, we successfully implemented the algorithm
presented in [1]. Moreover, we studied various trends related
to the number of iterations, the nature of the encoded text,
duration of carrier audio and the PESQ score. We observed
that noisy signals serve as excellent carrier audio because the
perturbation can be easily hidden in the existing noise. On
the other hand, it is very difficult to encode the perturbation
in a clean carrier. Also, texts with high perplexity are difficult
to encode.

V. FUTURE WORK

We plan to extend the work in the following directions:
• Make our scheme immune to noisy channels i.e. the

model should be able to recover the encoded text even
after addition of some noise to the perturbed signal e.g.
Gaussian noise. [8] talks about a few suggestions.

• Train a discriminator to distinguish between the perturbed
audio and the clean audio. This could help improve the
imperceptibility of the perturbed signal. Alternatively,
we could also make our scheme robust to Gaussian
noise by training a discriminator to distinguish between
Gaussian noise samples and the perturbations. By doing
so, our scheme can generate a perturbation which does
not resemble Gaussian noise and can hence be immune
to noisy channels.

• Try out other ASR models. It is important to note that
a better model (in terms of metrics such as PER) need
not always be the best model for our task. In fact, we
want our model to be highly susceptible to adversarial
attacks so that any given text can be quickly encoded with
a small perturbation. This could be achieved by training
the ASR model on some stego pairs.

• Extend the spectrogram-based technique by incorporating
the work done in [9].
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APPENDIX A

Table IV contains more details about the original audios and
the encrypted text mentioned in Table I.

Dataset Original Audio Sr. No Encrypted Text

TIMIT
Shaving cream is a

popular item on
halloween

1 Nuclear strike authorized (20 phones)

2 15 random phones

Breaking Bad
I am not in danger

Skylar; I am the
danger

3
Shyam, how is your
semester exchange
(30 phones)

4 15 random phones

Oppenheimer
Now I am become
death, the destroyer

of worlds
5

Hey Alexa, add a TV
to my shopping list
(32 phones)

6 Code red (7 phones)

Lion King

To change the future you gotta
put the past behind you, way
behind. Look kid, bad things

happen but you cannot do
anything about it. Right?

WRONG! When the world turns
its back on you, you turn your

back on the world and only
embrace what’s next and turn the

what into so what

7

In winter that seat is close enough
to the radiator so it’s warm yet not
so close that he sweats. In summer

it’s directly in the path of cross
breeze. It faces the television at an

angle that isn’t direct so he can still
talk to everybody yet not so wide

that the picture looks distorted
(103 phones)

8 That’s my spot (13 phones)

TABLE IV


