
Quantitative Semantics + DIRL
Mithilesh Vaidya

Based on: Jothimurugan, Kishor, et al. "Compositional reinforcement learning from logical specifications." 
Advances in Neural Information Processing Systems 34 (2021): 10026-10039.



SpectRL language

● Specification:

● Maze task
and 
Generated graph by SpectRL

● Policy learnt to maximize probability of satisfaction of ɸ by learnt trajectory
● Key limitation: lack of quantitative semantics

Maximize P(success) AND minimize some function f(s0, s1, …, sk)



Example

● A(+x) denotes cost of 
taking the route via A

● Value on arrow 
denotes probability

● Inherent tension in 
P(success) and Cost

e.g. fast lane costs more 
but P(reach) is also higher

Note: User does not specify 
different subgoals for A and B 
(model needs to learn it)



Assumptions

Assumption 1: f(.) can be decomposed into a summation (or any known function) 
for each sub-goal i.e. for a task with m subgoals and a known function g(.)

f(s1, s2, …, sT) = g (f(s00/1, …, sk0), f(s01, s11, …, sk1), …, f(s0m, s1m, …, skm/T))

Assumption 2: f(.) shows some discreteness

Justification: Many real-world problems have inherent discreteness in cost



Approach

1. For each subgoal m, train Km RL policies (one for each possible set of 
trajectories* and maintain: P(success) AND values of f(.) [K = 2 in eg]

2. Cluster the values of f(.) and use the mean as the representative.**
3. Use beam search to consider all possible candidates (scope for pruning)
4. Keep only top-m candidates depending on compute-performance tradeoff and 

proceed to next sub-goal

*k can be either determined automatically using clustering approaches or given as input by user if 
known beforehand

**If assumption holds and learnt RL policies indeed have distinct values of f(.), the mean will serve 
as a good approximation (can also use min or other summaries)



Beam Search and Pruning

Scope for pruning:

● Node 2 has lower P and higher f(.) 
than Node 3 → eliminate Node 2

● If given budget = 45, also eliminate 
node 1

Note: We don’t need to maintain 
previous beams at each step since we 
have aggregated both P and f(.)

P gets multiplied, f(.) gets added 
(could be any arbitrary aggregate)



Key challenges

Challenge Solution/Discussion

# nodes in beam may 
explode

● In the worst case, may have to explore all (just like SAT) → no way around it 
to guarantee optimality

● In practice, prune based on both: probability of success and cost

Learning distinct 
policies (one per 
cluster of f)

Let Fk be set of values of f(.) for policy k:
● Fk should have minimum variance (small intra-cluster distance)
● Sets Fk and Fl should be far from each other (large inter-cluster distance)

Structure reward function accordingly to encourage exploration till we find a 
cluster and then exploit that cluster

Estimating K 
(number of RL 
policies/clusters of f) 
on-the-fly

● Threshold on inter-cluster distance distribution
● Elbow method in k-means



Thank you
Questions?


