
Wav2vec 2.0
Presentation by Mithilesh Vaidya, DAP Lab, EE IITB



Introduction
● Why?

○ Any deep learning task requires significant amount of high-quality data

○ Bottleneck for low-resource tasks

● Trend: Pre-train on large dataset + Fine-tune on task dataset

○ NLP: models are built on top of BERT (+variants)

■ Pre-trained transformer trained on gigantic datasets e.g. Wikipedia

■ Fine-tune an additional layer on top of BERT for given task

○ CV: ImageNet pre-trained feature extractor at input

● Wav2vec 2.0 (w2v2) is speech’s answer to BERT!

● What?: extract robust speech representations from raw waveform

● I like to think of it as efficient (lossy) data compression

● Best part: Pre-trained models available [5]



Timeline

Transformer

2017

2018

BERT

Jan 2019

CPC [1]

Wav2vec [2]

Sep 2019

Wav2vec 2.0 [4]

Oct 2020

VQ-Wav2vec [3]

Feb 2020



● (lossy) Data Compression: predict 

future e.g. LPC for speech

● Unsupervised learning: predict 

contextual/missing data

e.g. word2vec for LM: a word is 

known by the company it keeps

● Alternative: transfer learning 

(low-level representations) but could 

be still task-dependent e.g. emotion 

recognition might ignore phonemic 

content in the first few layers itself

● No such prior in predictive coding

Contrastive Predictive Coding (CPC)

Components:

● Encoder: compress high-dimensional data 

into a vector

● AR: bring more context into account for 

increasing predictive power (aggregator is 

technically more correct)

All figures in this presentation are screenshots from respective papers



How is it trained?

● Pick k random samples Zj 

● Minimise Contrastive loss: 

● f(.) is any scoring function e.g.

● Natural question: Why not simply reduce MSE?

○ Collapse i.e. encoder can output constant embedding i.e. Zt = 0 (since E2E training)

○ Loss will be 0!

○ Need some negative samples

○ Question: Push negative samples away and positive closer (like Triplet loss)?

● Why this exact form (distractor classification loss)?

-> Backed by theoretical explanation of maximising mutual information

CPC training



● Key difference between CPC and AE:

○ Don’t reconstruct entire input

○ Why? Unnecessarily complexity required to model distribution of original signal

E.g. WaveNet reconstructs entire waveform for generative modelling!

○ Not required: goal is to discard noise and capture high-level information

● Flexible: Encoder and AR model could be anything (GRU, Transformers, etc.)

● Applicable in various domains:

○ Audio (ASR, speaker identification)

○ Language (movie sentiment, question-type classification)

○ Vision (ImageNet classification)

○ RL

● Can use either representation for downstream tasks

○ Ct: long-range dependencies

○ Zt: otherwise

● Example: replace MFCCs with Ct/Zt for ASR and add linear layer on top to get phone 

predictions

CPC attributes



From CPC to wav2vec
● CPC is a general framework

● Wav2vec = CPC applied specifically for ASR

● Encoder (x -> z): 5-layer convolutional network with

○ Kernels: (10, 8, 4, 4, 4)

○ Strides: (5, 4, 2, 2, 2)

○ Receptive field: 30 ms of data at 16 KHz, 10 ms hop

● Context (z -> c):

○ 9 CNN layers with kernel size = 3 and stride = 1

○ Total receptive field = 210 ms

● Small and large models with different number of layers

● Other hyperparameters: # time steps to predict and # negative samples (sweet 

spots for both: 12 and 10 resp.)



From wav2vec to vq-wav2vec
What?

● Add a quantization step between feature encoder 

output Zt and aggregator network C to get Qt (using 

either Gumbel Softmax or K-Means)

● Rest same as wav2vec

Why discretize?

● Speech perceived by humans as distinct units

(e.g. phones) (Question: What about para-linguistic 

content which may not have discrete equivalents?)

● Can apply a host of techniques developed by NLP 

community (since textual input is discrete)



● Hyperparameters of encoder and context network similar to wav2vec

● BERT has 12 layers with 768 dimension

● 2 codebooks, each with 320 entries are used, giving rise to 320

2 

= 102,400 possible 

combinations i.e. discrete units

● Why not directly initialise 102,400 entries?

-> Mode collapse i.e. only some entries are used. 640 entries means much fewer 

parameters but at the same time, being more expressive since combinations can be 

powerful. (check Appendix for results)

vq-wav2vec



vq-wav2vec summary
● Once vq-wav2vec is trained, pre-train BERT by asking 

it to predict masked input tokens (just like in NLP). 

Note that we don’t need any labels yet

● Finally, add a classification layer on top and train it in 

supervised fashion using labels for ASR (or any task)

● Simply using codewords as inputs cannot outperform 

baseline (since only finite possibilities) but adding a 

BERT on top helps outperform wav2vec!

● In summary, discrete + BERT (vq-wav2vec) > 

continuous + CNN (wav2vec)

● Question: Why not train vq-wav2vec and BERT 

together? My guess: Tokens input to BERT must be 

fixed 



From vq-wav2vec to wav2vec 2.0
2 key changes:

● End-to-end training

● Replace context network with 

Transformer

Method:

● Raw audio -> CNN -> latent Zt

● Zt -> Transformer -> Contextual 

embeddings Ct

● Encodings Zt quantized to get Qt 

(only for pre-training)



● Transformers are everywhere! (NLP, even Vision)

● Context CNN (z -> c) in wav2vec replaced by a Transformer

● Self-attention over entire sequence >> simple CNNs i.e. leads to better 

contextualised embeddings

● Similar to BERT, mask time steps randomly and predict quantized representations 

(called targets) of masked time steps

● Not sure if new task (predicting randomly masked time steps) is harder or easier 

than predicting only the future

Transformer



● Done ONLY during pre-training

● Zt is discretized by choosing one entry from each of the G codebooks using 

product quantization and concatenating them

● Contrastive loss is similar to wav2vec (here, sim refers to cosine):

● Additional diversity loss to encourage all codewords are used

● Thus, we are pushing context representations towards the discrete domain while 

still allowing more information since continuous in nature!

Question: Why not use a simple affine transform on Ct before computing 

similarity with quantized representation (like wav2vec)? 

Quantization



● Feature encoder: 7-layer CNN with 512 channels and strides similar to wav2vec

● 25 ms receptive field, 20 ms hop

● Low resource: On Librispeech, after 53k hours of pre-training, WER drops from 

16.3/25.2 (discrete BERT or vq-wav2vec) to 4.8/8.2 (test clean/other) on training 

with 10 minutes of labelled dataset!! Think about the possibilities of developing 

ASR for low-resource Indian languages!

● Also attains best performance when using all 960 hours of labelled dataset

Experiments



Ablation

● Quantizing Zt before feeding it to transformer may be suboptimal because it hasn’t 

seen enough context to decide which phone it is. Only on passing it through a 

context network (transformer in this case), will Ct have a meaningful discrete 

equivalent

● “Continuous targets reduce the effectiveness of self-supervised training since targets can capture detailed 

artifacts of the current sequence, e.g. speaker and background information, which make the task easier and 

prevent the model from learning general representations beneficial to speech recognition”

● In other words, both continuous leads to some form of overfitting

● Question: For tasks such as emotion recognition, we actually need this para-linguistic 

information. Will last configuration perform better?



Latents and Phones
● Using TIMIT alignment 

information, activation of each 

discrete latent is calculated

● We then check co-occurrence 

with phone labels

● (i, j) corresponds to average 

activation of i

th

 phone with j

th

 

latent (i: 1 to 39, j: 1 to 640)

● Nice intuitive plot which says 

that each latent (column) 

roughly corresponds to a phone



Couldn’t find direct application of wav2vec on music datasets.

Check these out:

1. Spijkervet, Janne, and John Ashley Burgoyne. "Contrastive Learning of Musical 

Representations." arXiv preprint arXiv:2103.09410 (2021)

○ Different from wav2vec but same philosophy (self-supervised pre-training + FT on given dataset)

○ Results presented for music classification

○ Code available: https://spijkervet.github.io/CLMR/

2. Castellon, Rodrigo, Chris Donahue, and Percy Liang. "Codified audio language 

modeling learns useful representations for music information retrieval." arXiv 

preprint arXiv:2107.05677 (2021).

What about music?

https://arxiv.org/pdf/2103.09410.pdf
https://arxiv.org/pdf/2103.09410.pdf
https://spijkervet.github.io/CLMR/
https://archives.ismir.net/ismir2021/paper/000010.pdf
https://archives.ismir.net/ismir2021/paper/000010.pdf
https://archives.ismir.net/ismir2021/paper/000010.pdf


Takeaways
● For low-resource: Pre-train on large unlabeled datasets in self-supervised fashion + 

Fine-tune on task at hand

● Loss function extremely crucial (I tend to stick to the simplest option i.e. work on 

better model architectures instead of novel loss functions)

● Enforcing bottlenecks (such as quantization) can improve performance (provided 

we have an intuitive backing for where to impose the bottleneck)



How do I get started?
Hugging Face (highly recommended since the community is very active):

● Model: Wav2Vec2

● Code walkthrough: Fine-Tune Wav2Vec2 for English ASR in Hugging Face with 

🤗 Transformers

PyTorch: Speech Recognition with Wav2Vec2 — PyTorch Tutorials 1.10.1+cu102 

documentation

Helpful blog article: Self-training and pre-training, understanding the wav2vec series

https://huggingface.co/docs/transformers/model_doc/wav2vec2
https://huggingface.co/blog/fine-tune-wav2vec2-english
https://huggingface.co/blog/fine-tune-wav2vec2-english
https://pytorch.org/tutorials/intermediate/speech_recognition_pipeline_tutorial.html
https://pytorch.org/tutorials/intermediate/speech_recognition_pipeline_tutorial.html
https://maelfabien.github.io/machinelearning/wav2vec/#b-what-is-really-embedded-in-this-speech-representation


References
[1] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. "Representation learning with 

contrastive predictive coding." arXiv preprint arXiv:1807.03748 (2018)

[2] Schneider, Steffen, et al. "wav2vec: Unsupervised pre-training for speech 

recognition." arXiv preprint arXiv:1904.05862 (2019)

[3] Baevski, Alexei, Steffen Schneider, and Michael Auli. "vq-wav2vec: Self-supervised 

learning of discrete speech representations." arXiv preprint arXiv:1910.05453 (2019)

[4] Baevski, Alexei, et al. "wav2vec 2.0: A framework for self-supervised learning of 

speech representations." arXiv preprint arXiv:2006.11477 (2020)

[5] https://huggingface.co/docs/transformers/model_doc/wav2vec2

https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1904.05862
https://arxiv.org/abs/1904.05862
https://arxiv.org/abs/1910.05453
https://arxiv.org/abs/1910.05453
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://huggingface.co/docs/transformers/model_doc/wav2vec2

