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Abstract

Expressive reading, considered the defining attribute of oral reading fluency, comprises the

prosodic realization of phrasing and prominence. The detection of perceived prominence in

speech can serve as a proxy for gauging the speaker’s comprehension of the text in an oral read-

ing assessment task. Hand-engineered acoustic features extracted at the word level from a set

of suprasegmental attributes such as pitch and intensity contours have been popular in previ-

ous works. We first review the performance of a previously proposed Random Forest classifier

operating on a compact set of hand-crafted acoustic features, which is considered as the base-

line for this work. With the advent of deep learning, automatic feature learning from acoustic

contours has shown promising results. We summarise the key findings of our prior work on

experimenting with a previously-proposed convolution neural network. A CNN is trained on

low-level acoustic contours while word-level context is explicitly incorporated by augmenting

each frame with a positional encoding. Though this model involves minimal hand-engineering,

it fails to surpass the performance of hand-crafted acoustic features presented in the baseline

work, despite various enhancements to the architecture such as a sequence model for modelling

temporal dependencies. We then present an end-to-end deep learning pipeline which operates

directly on segmented speech waveforms to learn acoustic features relevant to prominent word

detection. In the chosen Convolutional Recurrent Neural Network (CRNN) framework, the

CNN module extracts acoustic features from waveform segments at word level while the RNN

module exploits utterance-level dependencies. The CNN module is further found to benefit

from the replacement of unconstrained convolution filters at the input with perceptually moti-

vated Sinc filters. The linguistic association between the prosodic events of phrase boundary

and prominence can be further exploited by multi-task learning. By sharing the Sinc filters and

conditioning the prominence branch on phrase boundary prediction, a noticeable improvement

in performance is observed, thereby exceeding the previously reported performance on the same

dataset of a random forest ensemble predictor trained on carefully chosen hand-crafted acoustic
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features. We also present a justification for the improvement in performance due to Sinc filters

by visualising their frequency response and comparing it with the standard unconstrained con-

volution layer. We further evaluate the possibly complementary information between acoustic

features and pre-trained word embeddings. A drastic improvement in performance confirms the

effectiveness of such non-acoustic features. Finally, the performance of the model as a func-

tion of various word segment properties is discussed. Based on an analysis of these results and

existing literature, we propose a number of promising future directions which can be pursued.
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Chapter 1

Introduction

Apart from the phonemic content, extensive para-linguistic information is conveyed in

human speech. This information can convey additional meaning, help interpret nuanced dif-

ferences in meaning or convey emotion. Conflict estimation [3], emotion recognition [4, 5, 6]

and detection of various disorders [7, 8, 9] are some of the tasks which can be carried out

by analysing these para-linguistic features. They manifest themselves via changes in various

acoustic properties such as pitch, rhythm and intensity.

The prosodic structure of speech carries important information in terms of the syntax and

the meaning, both of which are critical to a listener’s ease of comprehension of the spoken

message [10, 11, 12]. Phrase boundaries embed sentence syntax through word grouping while

prominence or emphasis on specific words signals new information or highlights a contrast.

In this work, we focus specifically on prominence prediction in children’s read speech.

Before we proceed, it is important to distinguish between two forms of stress: word stress (also

called pitch accent) and sentence stress (referred to as prominence in this work). Word stress

is defined for every word in English and occurs on one syllable, as indicated in the dictionary

using the accent symbol ‘. For example, the word ‘dictionary’ has a dictionary pronunciation

of d̀ik-sh-ner-ē. The word stress for this word is always expected for the syllable ‘dik’. It is
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also called pitch accent because in English, the stress is acoustically realised by modifying the

pitch of the stressed syllable. Other languages may utilise other forms of acoustic manipulation

to stress the syllable. Sentence stress, on the other hand, is heavily influenced by the frequency

of the word. More specifically, if the word imparts any new information or contradicts existing

information, the speaker is expected to stress on the word and make it stand out in it’s local

context via changes in the suprasegmental attributes such as duration, F0, intensity and spectral

shape[13]. Local context includes not only the phones in the word but also several neighbouring

words. Hence, the word ‘dictionary’ may or may not be sentence stressed as it depends on the

context in which it is used. The two are not independent: when a speaker decides to make a

specific word prominent, the expected syllable to be stressed in that word (as mentioned in the

dictionary) must be chosen to carry the sentence prominence. Therefore, knowledge of word

stress (i.e. which syllable should be stressed in a given word) is important for a good speaker.

Prominence detection has applications in scoring of spoken language fluency [14, 15]

and text-to-speech synthesis [16]. Moreover, we plan to use the prominence predictions as an

auxiliary input for a model tasked with end-to-end speech scoring which assigns a fluency score

to the entire utterance.

Traditionally, various aggregates of the sampled acoustic parameters (e.g. pitch and in-

tensity) across the word segment including mean and variance, contour shape descriptors, and

differences in these quantities across neighbouring words are computed. These are referred to

as ‘word-level prosodic features’ [17, 18] which are then used to train a conventional supervised

classifier, possibly in combination with lexico-syntactic information [19, 20, 21]. In the baseline

work [1], a large set of features were computed across the distinct suprasegmental attributes of

speech and Recursive Feature Elimination with Cross Validation (RFECV) was employed to de-

rive a compact set of interpretable features for speaker-independent boundary and prominence

detection on a children’s oral reading dataset. It was observed that apart from the expected pitch,

duration and intensity based aggregates, the acoustic cues to prominence included a number of

spectral shape functionals while the phrase boundary prediction was dominated by pause-based

features.

Hand-engineered features require extensive domain-knowledge. Moreover, they can miss

out on important patterns in data since the space of such features is very large. To overcome

these shortcomings, end-to-end deep learning models operate on minimally-processed input
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and learn all task-related features through large datasets. Thanks to an explosion in compute

capabilities and size of datasets, such models have dominated the landscape for the last decade.

A brief summary of deep learning models for prominence detection is discussed next.

Rosenberg et al. [22] used a large number of acoustic-prosodic features and aggregates at

word level derived from their previous AuToBI work [17, 23]. A bidirectional RNN classifier

was used to model the word sequence context as opposed to that explicitly provided in the

feature vector. They observed a small improvement (< 1% absolute) in boundary and pitch

accent detection over a baseline conditional random forest classifier. Wu et al. [24] also used

similar aggregated acoustic features with an LSTM to find an improvement over the use of

an SVM classifier. Lin et al. [25] used a hierarchical BLSTM network to aggregate features

across phone, syllable and word to model contextual information at multiple scales in the joint

detection of boundaries and prominence.

Motivated by the demonstrated potential of convolutional neural networks to learn dis-

criminative patterns and replace any feature engineering, recent research has focused on ex-

tracting CNN based feature representations from low-level acoustic-prosodic contours to obtain

the word-level detection of pitch accents in an utterance [26, 27]. Stehwien et. al. [27, 28] used

a CNN on sampled acoustic parameters (energy, F0, loudness, voicing probability, zero crossing

rate and harmonic-to-noise ratio), together with a context window of two neighbouring words

to optimally learn the word-level aggregated features. With word position indicators provided

in the input segment, they report an improvement of 1-3% absolute over Rosenberg [17] on

lexical stress and phrase boundary detection on the BURNC corpus. On the spectrum of hand-

engineered features at one end and models operating on raw waveform at the other, the above

model lies somewhere in the middle. It, however, suffers from the same issues mentioned above,

albeit to a lesser degree as compared to the RF classifier operating on word-level aggregates.

Both local acoustic features and longer, more global contexts spanning several words

and possibly different sentences across the utterance are important in the perception of promi-

nence. Hence, architectures combining low-level feature aggregation with sequence models

were realized with the same contour-learned features input to an LSTM classification layer [26,

29]. Attention mechanism can help attend to various character embeddings in a BLSTM-CRF

model [30].

As mentioned previously, feature learning via end-to-end neural network systems trained
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on speech waveforms is being increasingly viewed as the optimal approach to complex clas-

sification tasks [3, 31]. Such systems have achieved performances close to, but not always

exceeding, those of classifiers with task-specific hand-crafted features. This is because such

models are prone to overfitting due to the large number of parameters. This hints at a need

for the introduction of reasonable constraints, or additional domain knowledge in the network

architectures, especially in the widely encountered data-constrained scenarios. This trade-off

between allowing the model to learn everything from scratch and incorporating domain knowl-

edge is an important consideration in today’s deep learning landscape.

In this work, we explore precisely such variations for the prominence detection task from

segmented speech waveforms starting from a straightforward CRNN model. This is the first

case of prosodic event detection from speech waveforms that we are aware of. The first vari-

ation involves replacing the CNN layer at the input with tunable bandpass filters called Sinc

filters [31]. These are motivated by the traditionally used Mel Filterbanks which emulate low-

level auditory processing. SincNet has been applied in frame-level speaker identification where

its hyperparameters have been found to be critical, although sometimes counter-intuitive, to

achieved task accuracy [32].

Next, we try to exploit the linguistic association between phrase boundaries and promi-

nent words with multi-task learning. The presence of phrase-finality increases the perceived

prominence of the word [33, 34] and can potentially contribute to the feature representation

for prominence. Recent work on the joint prediction of boundary and prominence is promis-

ing. In [25], the boundary predictions were computed from the final layer output of a 3-layer

BLSTM network while prominence predictions are made at the penultimate layer. In another

attempt, prosodic event classification is viewed as a 4-class problem [35]. Building on the the

above theme, we explore various multi-task architectures for prominence detection that incor-

porate information about the (typically more reliably predicted) phrase boundary status of the

word.

We also examine the possibly complementary information present in the hand-crafted

acoustic features. Finally, given the importance of lexical information in prominence detec-

tion [36, 37], we report the performance of the combination of acoustic features and pre-trained

word embeddings.
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Figure 1.1: Distribution of votes for prominence and phrase boundary. The dataset contains a

total of 41,286 words across 790 utterances by 35 speakers, recorded at 16 kHz sampling rate.

Each word is labelled for both prominence and boundary by 7 naive listeners.

1.1 Dataset

The children’s oral reading dataset used in this work comprises recordings of grade-appropriate

text read aloud by selected middle school students with reasonable word decoding ability in

English (as second language) but widely varying levels of prosodic skill [1]. The individual

utterances are story paragraphs comprising between 50-70 words, each word labelled separately

for the presence/absence of prominence and phrase boundary by 7 naive listeners using the RPT

methodology [38]. This is reduced to a net rating per word based on number of votes (out of

7), further scaled down to the range 0-1, to obtain the ‘degree’ of prominence (boundary) per

word. The utterances are available segmented at word level by forced alignment with the manual

transcript.

Z-score normalisation is applied to each audio recording. Moreover, all hand-crafted

acoustic features are also z-score normalised, which is a standard practice in machine learn-

ing to tackle features on different scales.
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The distribution of votes is given in Figure 1.1. This may be compared with data sets of

native English speech with perceived phrase breaks reported to be 14.4% and prominent words

to be 26.1% of the total number of words [39]. If we consider prominence labelling based on

3 or more votes, we obtain a comparable figure of 25% words considered prominent in our

dataset. Since the inter-rater agreement for phrase boundary is higher than that for prominence,

thresholding on 4 or more votes gives 19.9% words as phrase boundaries.

1.2 Our Contributions

• The first end-to-end deep learning model for the task of prominence detection which

operates on waveforms segmented at word level.

• Demonstrate a performance improvement by replacing the unconstrained 1D convolution

at the input with a Sinc convolution in the context of prosodic event detection.

• Analysis of various multi-task learning paradigms for joint prediction of prominence and

phrase boundary detection.

1.3 Publication

The work presented in this report has been submitted as:

Mithilesh Vaidya, Kamini Sabu and Preeti Rao, “Deep Learning for Prominence Detection in

Children’s Read Speech”

at the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
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Chapter 2

Word-level Features

2.1 Hand-crafted acoustic features

For the task of prominence detection, 34 hand-crafted features (A34) were proposed in the

baseline [1]. These were obtained after applying RFECV to a total of 2524 features, consisting

of aggregates of pitch, energy, intensity and spectral band energies computed across the word

segment and varying neighbourhoods of upto 2 words on each side and speaker normalised ver-

sions of the same. They also include some AuToBi baseline features [23]. A short description

of the chosen set of 34 features can be found in Table 2.1.

Similar to A34, which have been optimised for the task of prominence detection, A27

refers to 27 features extracted using RFECV for the task of phrase boundary detection in [1].

These are described in Table 2.2
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Sr.

No.

Feature Set

(No. of features)
Description

1. F0 (8)
min, max, span of F0 contour in context;

Differences of max and span with previous word

F0 contour shape (3)

Slope of line fitted to semitone F0 contour of word;

std of instantaneous slope contour across word;

Similarity of word F0 contour with valley contour

2. Intensity (6)

mean, span of intensity in context;

Differences of mean and span with previous word;

Slope of line fitted to energy contour across context window

3. Spectral Shape (12)

Mean for bands: 0 to 500Hz and 400Hz to 2kHz;

Span across temporal context for intensity in bands:

2kHz to 5kHz, 5kHz to 8kHz;

Slope of band 400Hz to 2kHz intensity contour across word;

Difference of specific band energy between current and next word:

(bands 0 to 500 Hz, 60 Hz to 400 Hz, 1kHz to 2kHz,

2kHz to 4kHz, 5kHz to 8kHz)

4. Duration (5)

Max-min of SN vowel durations in the word normalised by

local tempo in pause-separated window;

Max vowel duration*; Max syllable duration;

Difference of max syllable duration with that of previous word*;

Max-min difference for phone duration with that of previous word*;

Note: * are Speaker Normalised by phone rate

Table 2.1: 34 hand-crafted features optimal for prominence prediction obtained from RFECV

and a Random Forest classifier. The context mentioned in the table could be any of the 8 word

neighbourhoods. Refer to Section 4.2.2 and Table 6 in [1] for more details.
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Sr.

No.

Feature Set

(No. of features)
Description

1. F0 (4)
Min, mean of F0 contour;

Differences of above with previous word

F0 contour shape (6)

Slope of line fitted to F0 contour of word;

Difference of F0 slop with next word;

Word-level max of SN instantaneous F0 slope contour

Difference of slope mean between current and next word

Similarity of word F0 contour with rising and falling contour

2. Intensity (6)
Min, span, slope of intensity in context;

Differences of above with previous word;

3. Spectral Shape (5)

Word-level span for energy in band 5kHz to 8kHz;

Difference of band energy for 1kHz to 2kHz

between current and next word;

Difference in across-word fitted slope of the same

between current and next word;

Word-level min of spectral tilt

4. Duration (3)

Max syllable duration SN by articulation rate;

Mean phone duration context normalised by phone rate;

Difference in longest vowel duration within a word with

previous word (both SN by articulation rate)

5. Paurse (3)

Difference between SN post-word pauses of current

and next word;

Difference between pre-word and post-word pauses;

SN version of above

Table 2.2: 27 hand-crafted features optimal for phrase boundary prediction obtained from

RFECV and a Random Forest classifier. SN denotes speaker-normalised version of the fea-

ture. The context mentioned in the table could be any of the 8 word neighbourhoods. Refer to

Section 4.2.2 and Table 4 in [1] for more details.
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2.2 Lexical features

Prominence is linked to the text syntax and semantics with content words such as proper nouns

expected to receive prominence most of the time, followed by adjectives, nouns, adverbs, and

verbs respectively [40]. To exploit this dependency, each word in the canonical text is cate-

gorised into one of 12 part-of-speech (PoS) tags. For words which are inserted by the speaker

erroneously, an additional binary variable is set to 1. In addition to these 13 features, the num-

ber of phones and number of syllables in the word are also considered. This gives a total of 15

features, together termed as PoS+. Moreover, based on the top-down expectations of the lis-

tener, each word is labelled as either prominent, optional or not prominent (similarly for phrase

boundary). This gives a total of 6 binary features per word. These are referred to as information

structure or IS.

The field of natural language processing has witnessed tremendous progress in the last

decade due to large powerful models trained on huge corpora [41, 42, 43, 44]. A multitude

of tasks can be solved by freezing the feature extraction layers of such models and adding

classification layers on top, which are trained for the task at hand. Numerous word embeddings

have been developed over the years, which capture semantic similarities in high-dimensional

space. Lexical features in the form of word embeddings can implicitly capture parts-of-speech

information. For our task, we test two popular word embeddings: GloVe [45] and BERT [46]

Their usage in the context of prosodic event detection has been explored in [37]. In this

work, we extract 100-dimensional GloVe embeddings pre-trained on Wikipedia using the gen-

sim package. For BERT, we use the bert-base-uncased pre-trained model available in the Hug-

gingFaces library. The 768-dimensional BERT embedding is extracted from the Encoder of the

Transformer model.

The embedding is passed through a dropout layer followed by a linear layer whose dimen-

sion is a hyperparameter [37]. The intuition behind this step is to ensure that the lexical and

acoustic features lie in similar spaces (in terms of dimensionality and abstractness) before con-

catenation. After tuning, we found that a dropout layer of probability 0.3 and a fully-connected

layer of dimension 300 gave the best performance.
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Chapter 3

Acoustic Contours

Before moving on to waveform-based CNN models, we explored the architecture proposed

by Stehwien et. al. [27] in more depth since it proposes to combine the best of both worlds:

domain knowledge is incorporated by extracting contours such as F0 while deep learning’s

potential is exploited by training a CNN to detect patterns in such contours. We briefly review

our previous work [2] in this chapter.

3.1 Feature sets

The word-level features in the baseline work [1] were computed from word (and sub-word)

aligned contours corresponding to the time-varying acoustic parameters of F0, intensity and

spectral shape, computed at 10 ms intervals. We wish to investigate CNN-based automatic

learning of word-level features from the same low-level acoustic contours. A brief description

of the contours is given in Table 3.1.
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Sr. No.
Feature Set

(No. of contours)
Contour description

1. Pitch (4)
Pitch in Hz and semitones;

z-score normalised versions of both

2. Intenity (4)
Energy and Intensity;

z-score normalised versions of both

3. Spectral shape (7)

HNR; Spectral Tilt;

Sonorant Band (300-2300 Hz)

Energies in the bands:

60–400 Hz, 400–2000 Hz, 2000–5000 Hz, 5000–8000 Hz

Table 3.1: 15 low-level acoustic contours which are fed to a CNN for feature extraction, as

discussed in Section 3.1.

3.2 CRNN

A CNN is tasked with feature extraction from acoustic contours. We have a matrix of acoustic

features for each utterance (call it feat). It’s dimensions are T x 15 where T is the total number

of frames in the utterance. From the word boundaries (obtained using forced alignment), we

extract a slice for each word by also including it’s immediate neighbourhood in the feature

matrix i.e. if sk and ek denote the start and end frames respectively of the kth word in the

utterance, the following slice is extracted for the ith word: f eat[si−1 : ei+1]. Note that pauses

between words are also captured in this feature slice.

By including the neighbourhood, the CNN can detect patterns during word transitions,

which can be especially helpful for modelling pauses. However, CNNs are invariant to trans-

lation (by design) and hence cannot distinguish between frames of the current word and it’s

neighbours. This can be tackled by concatenating a positional encoding to each frame. Extend-

ing the 1-bit encoding proposed in [27], we concatenate a 3-bit encoding which is 001 for the

frames of the previous word, 010 for the current and 100 for the following word (Figure 3.1).

With separate encodings for the previous and the following word, the CNN can further distin-

guish between pre-word pauses and post-word pauses, which would not be possible with the

12



Figure 3.1: Final feature matrix for the ith word after augmenting the contours with a 3-bit

positional encoding.

1-bit encoding in [27].

Given the previously observed speaker-dependence of the relative importances of the dif-

ferent prosodic attributes, we also experiment with an architecture which has separate CNN

filter banks for each feature set. The final output is concatenated to obtain the final embedding.

The 1D convolution output of each of the CNN filters is max-pooled across time to get a scalar

value per filter per filter bank. We experiment with various kernel sizes to capture sub-phone,

phone, syllable and word-level context. Each filter bank has N filters, each with k kernel sizes,

resulting in a kN-dimensional feature encoding for each feature group corresponding to a word.

The CNN embeddings for each word are fed to a sequence classifier (such as GRU), which

can dynamically model utterance-level dependencies as compared to the static word neighbour-

hoods involved in the computation of hand-crafted features. The final architecture is depicted

in Figure 3.2.
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Figure 3.2: The proposed CRNN framework for extracting features from acoustic contours.

Figure reproduced from [2]. Note that the CNN depicted in the figure has separate filter banks

for each feature set.

3.3 Results

The results for the first set of experiments are presented in Table 3.2. We replaced the Ran-

dom Forest classifier with sequence models such as LSTM and GRU (and their bidirectional

equivalents) and varied the number of layers and hidden units. A 2 layer, 256-dimensional bidi-

rectional LSTM gave a modest improvement of 0.02 (absolute) in Pearson correlation over the

baseline Random Forest classifier using 34 acoustic hand-crafted features (discussed in detail in

Table 3.2: Performance of various sequence models with 34 hand-crafted acoustic features. (*

indicates sd < 0.01)

Model # layers # hidden units Pearson correlation

RFC - - 0.69*

GRU 2 96 0.68

LSTM 2 256 0.69

BGRU 2 96 0.70

BLSTM 2 256 0.71*
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Table 3.3: Performance of a single CNN operating on all feature groups as a function of different

sets of kernel widths, with the corresponding literature reference indicated. (* indicates s.d. <

0.01)

Kernel widths Pearson correlation

3, 5, 11, 25, 51 0.67

5, 11, 25, 51 [47] 0.67

25, 51 0.67*

11, 25, 51 0.67*

11 [26] 0.65

Section 2.1), thereby proving the importance of modelling utterance-level dependencies instead

of treating each word independently.

Next, we tune the CNN architecture by varying the CNN kernel widths for capturing

patterns in the contours at various time scales. Results are presented in Table 3.3. We observe

that the syllable and word width kernel sizes (25 and 51 frames or 250 and 510 ms respectively)

helps the performance while including other widths does not change it. Hence, we finalise these

widths. The number of filters of each kernel size is set to 8 since additional filters did not give

any improvement in performance.

On training a separate filter bank for each feature set instead of a single CNN, the per-

formance further jumped to 0.69. Note that this is the best Pearson correlation obtained so far

using acoustic contours. In summary, a sequence model (BLSTM) which accepts hand-crafted

acoustic features attains a Pearson correlation of 0.71, which is still higher than that obtained

after moving from hand-crafted features to acoustic contour-based learning. This gap motivated

us to go one level deeper and explore the possibility of extracting features tailor-made for the

task of prominence detection from waveform in an end-to-end fashion.
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Chapter 4

Waveform-based Models

Replacing manual feature extraction with models which can automatically learn relevant

features from data has been the main promise of deep learning. A brief survey of the above

trend in the context of feature extraction from waveforms is discussed next.

Among the earliest works, [48] (2013) used a conventional CNN pipeline consisting of 1D

convolution, max-pooling and Tanh activation for the task of phoneme recognition on TIMIT.

The classification accuracy for a CNN trained on raw waveform was only 2% less (absolute)

than a CNN trained on MFCCs (a CRF decoder is used in both cases). [49] (2015) improved

upon the architecture with various initialisation schemes for the CNN weights, a different non-

linearity for training stability purposes and LSTM layers for better sequence modelling. CNN

kernels of width 35 ms were able to match the performance of Log-Mel filterbanks for Large

Vocabulary Continuous Speech Recognition (LVCSR). However, these models were trained on

2000 hours of data, pointing towards the need for large datasets in order to approach (and sur-

pass) the performance of hand-engineered features. [50] (2016) demonstrated a superior model

for the task of emotion recognition (and summarise their findings with a rather amusing title).

A convolutional recurrent neural network (CRNN) operating on waveform was found to outper-

form various handcrafted feature sets such as ComParE [51] and eGeMAPS [52]. WaveNet [53]
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(2016), an autoregressive model, was a major leap in the field of raw audio generation. Causal

dilated convolutions for an exponential increase in the receptive field, residual skip connec-

tions for improved gradient flow and gated activation units demonstrated superior performance

on diverse tasks such as text-to-speech, music generation and speech recognition. For speaker

verification, [54] (2018) extracted a fixed-dimensional embedding from raw waveform using

9 CNN layers, followed by an LSTM for exploiting temporal dependencies. A learnable 2-

parameter pre-emphasis layer (tuned with a lower learning rate) and a strided convolution layer

at the input outperformed Mel-Filterbank features. Complex Gabor filters were proposed in [55]

(2020) for replacing the usual CNN weight kernels to fully take advantage of its optimal time-

frequency resolution. LEarnable Audio Frontend (LEAF), proposed in [56] (2021), combines

Gabor filters with learnable pooling and learnable per-channel compression to allow the model

to learn all pre-processing parameters from scratch.

Inspired by the success of previous works, we propose a model which takes the ASR-

decoded word segments as input and predicts the degree of prominence.

4.1 CNN

Convolution Neural Networks (CNN), which were originally developed for pattern recognition

in images, are now ubiquitous in deep learning. The translation-invariant filters are efficient in

terms of number of parameters and do an excellent job at extracting patterns from any data.

A typical CNN consists of a number of layers. Each layer consists of:

1. Convolution layer: Responsible for extracting patterns from the input signal. We use 1D

convolutions in our case since the waveform is a 1D signal.

2. Batch Normalisation [57]: Important for training stability. Similar to input data nor-

malisation, Batch Normalisation normalises the activations of the hidden layers, thereby

reducing the internal covariate shift. This not only improves performance but also leads

to training stability.

3. Activation function: Non-linearities are crucial for the extensive expressive power of any

neural network. Since Sigmoid and Tanh suffer from vanishing gradients, they have been
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Figure 4.1: CNN architectures: (a) Standard CNN layers (b) Sinc replacing the first uncon-

strained layer.

replaced by ReLU and other activation functions.

4. Max Pooling: Pooling the activations of the convolution filters has two benefits. Firstly,

by aggregating the most important features, the model becomes robust to perturbations

and noise. Secondly, by reducing the time dimensionality, the filters in deeper layers can

extract patterns at coarser scales.

Many such layers help in the hierarchical extraction of information. The final CNN output

is max-pooled across time to get a fixed-dimensional embedding for each word (Figure 4.1(a))

4.2 SincNet

Mel Filterbanks are very popular since they emulate the low-level auditory filtering carried out

by our ears. Although they have served the speech community well for decades, the advent

of deep learning has questioned the notion of a fixed filter bank for all speech tasks. Instead,

can we extract task-specific filters motivated by Mel Filterbanks? SincNet [31] is a promising

answer to this question. By replacing the input CNN layer with Sinc convolution (SincConv),

an improvement was observed for the task of speaker recognition.
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Figure 4.2: Time domain representation and its equivalent frequency domain response of a Sinc

filter of size 251 samples. The filter is centred at 4000 Hz with a bandwidth of approximately

500 Hz.

These filters are parameterized by only 2 scalars: the lower and upper cutoff frequencies

of the band-pass filter. Both parameters are learned end-to-end via backpropogation. Figure 4.2

depicts a Sinc filter in both time and frequency domain.

They are initialised with the centre frequencies of Mel Filterbanks so as to speed up train-

ing. Theoretically, a standard convolution layer, with more parameters, has more expressive

power than SincConv. However, these unconstrained filters suffer from overfitting. On the other

hand, SincConv generalises well with just two parameters and has an elegant interpretation in

terms of its frequency response. In this work, we replace the first unconstrained convolution

layer with a Sinc layer, as shown in Figure 4.1(b).

4.3 Sequence Models

Context is important for predicting prominence [58]. In the manual extraction of word-level

features, the local neighbourhood is explicitly included in the feature computation stage e.g. in

the baseline work, a neighbourhood of upto 2 words (on each side) is considered in computing

the aggregates.

In deep learning, the word context that is critical in speech prosody perception can be
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Figure 4.3: Overall CRNN architecture. The CNN block refers to any one of the two proposed

architectures in Figure 4.1. WFt denotes word-level features such as hand-crafted acoustic or

lexical features. ⊕ denotes concatenation.

modelled by sequence models. The relevant local context is learned from the sequence of words

spanning the entire utterance. Owing to their popularity in various sequence tasks, we use a

Gated Recurrent Unit (GRU) [59] in our architecture. At each time step, the GRU takes as input

a fixed-dimensional vector corresponding to each word. This could be the CNN embedding

extracted from the word segment, hand-crafted word-level features or a concatenation of the

two. Since the entire utterance is available offline, a bidirectional GRU can further benefit from

both past and future context.

The output of the GRU at each time step is fed to a dense network consisting of two fully-

connected (FC) layers. The first FC layer, consisting of 128 neurons, is followed by ReLU

activation and a dropout layer. The second FC layer has one neuron, which is followed by

sigmoid activation to get the final score.

The final CRNN architecture is depicted in Figure 4.3.
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Chapter 5

Multi-task Learning

Studies have shown that the presence of phrase-finality increases the perceived prominence

of the word [33, 34]. This linguistic association between phrase boundaries and prominent

words can be exploited using a multi-task learning (MTL) framework. An extensive survey on

the motivation behind MTL and its variants can be found in [60, 61].

Large deep learning models are prone to overfitting. In some cases, in addition to the

labels of the task at hand, we also have access to labels of a related task. In such cases, we

can benefit from improved generalisation by training the model on an additional auxiliary task.

This can be thought of as implicit regularisation. We are aware that prominence and phrase

boundary are related tasks and hence the two can potentially benefit from shared representations.

Such sharing suppresses the noise present in the dataset by reducing overfitting since the same

parameters must learn useful representation for both tasks.

Recent work incorporating both prominence and phrase boundary predictions is reviewed

next. In [25], the boundary predictions are computed from the final layer output of a 3-layer

BLSTM network while prominence predictions are made at the penultimate layer. This differ-

ence could be attributed to the longer context which is typically required for the task of phrase

boundary prediction. In another attempt, prosodic event classification is viewed as a 4-class
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problem [35].

Based on the MTL variants proposed in [62], we try out various combinations of feature

sharing and conditioning.

5.1 Parameter Sharing

In parameter sharing, a carefully chosen section of the architecture is shared among the two

tasks. In most deep learning models, the layers close to the input are responsible for feature

extraction while those at the output carry out classification. For example, in object detection,

the first few CNN layers are responsible for low-level processing such as edge detection while

latter layers combine these edges to detect more complicated patterns.

In our case, the CNN is responsible for extracting acoustic information (such as pitch,

duration and energy) from waveform. It is reasonable to hypothesise that these low-level fea-

tures are then combined by the subsequent GRU for predicting prominence or phrase boundary.

Hence, we explore the benefit of sharing either the Sinc layer or both Sinc and the CNN layers.

5.2 Conditional MTL

In conditional MTL, the prediction(s) of the auxiliary task(s) is supplied as input to the main

task. This is particularly helpful when the final prediction of the auxiliary task serves as a strong

signal for the prediction of the main task.

An important consideration in these architectures is the location where the auxiliary pre-

diction is fed as input to the main branch. For our architecture, the phrase boundary prediction

can either be concatenated before the dense layer (with output of GRU) or before the GRU

(with the CNN embedding). Ideally, feeding it as early as possible should benefit all subsequent

layers. Hence, we supply the phrase boundary prediction at the GRU stage of the prominence

detection branch. This is because the CNN is operating on 1-dimensional waveforms while the

GRU accepts a fixed-dimensional embedding, which is an utterance-level feature which ideally
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encapsulates all acoustic properties relevant to the task of prominence detection.

We then explore the possibility of both conditioning and parameter sharing in a hybrid

architecture. Lastly, we study the performance of an ‘oracle’ model, in which the prominence

branch has access to the ground truth boundary labels. All MTL architectures are depicted in

Figure 5.1.
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Figure 5.1: MTL architectures: (a) Shared Sinc layers, followed by separate CNNs and GRU

heads for prediction of prominence (P) and boundary (B). (b) Both Sinc and CNN layers are

shared. (c) Conditioned MTL with separate CNNs and GRUs for P and B predictions. (d)

Shared Sinc combined with conditioning by boundary prediction. (e) Shared Sinc and CNN

combined with conditioning. (f) The oracle version of (d), where yB denotes the ground truth

label for boundary. ⊕ denotes concatenation.
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Chapter 6

Experimental Setup

In this chapter, we discuss the experimental setup. This includes the train-test split, test-

ing procedure using ensembling, loss function used for training and various hyperparameter

considerations.

6.1 Methodology

Since the dataset is limited, we use cross-validation style testing instead of a fixed train-val-

test split to report performance. Following the procedure in the baseline work [1], the dataset

is split into 3 equal folds with no speaker overlap. We carry out 3-fold testing by training

and validating models on 2 of the folds and testing these models on the remaining fold. For

training and validating on the 2 folds, we further split the 2 train folds into 4 sub-folds. This

is done to ensure that the model gets to see 75% of the data during training and 25% during

validation (as opposed to 50% for both train and validation if we do not split the two folds and

train just 2 models). The 4 trained models are then used for inference and their predictions

are averaged to generate results on the corresponding unseen test set. Refer to Table 6.1 for a
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Model Train Val Test

1a 1, 2, 3 4 5, 6

1b 2, 3, 4 1 5, 6

1c 3, 4, 1 2 5, 6

1d 4, 1, 2 3 5, 6

2a 3, 4, 5 6 1, 2

2b 4, 5, 6 3 1, 2

2c 5, 6, 3 4 1, 2

2d 6, 3, 4 5 1, 2

3a 1, 2, 5 6 3, 4

3b 2, 5, 6 1 3, 4

3c 5, 6, 1 2 3, 4

3d 6, 1, 2 5 3, 4

Table 6.1: Breakdown of sub-folds used for training, validation and testing.

detailed breakdown of the folds used for training, validation and testing. Increasing the number

of folds might result in a more reliable cross-validation result (low standard deviation) but time

taken for each experiment will also increase. Since the standard deviation for all waveform-

based models was observed to be less than 0.01, the benefit of increasing the number of folds

(beyond 3) might turn out to be marginal.

The results for the prominence degree prediction are reported in terms of Pearson cor-

relation between the predicted output and the degree of prominence from the RPT rater votes

which serves as ground truth. Although one can obtain a binary prediction by thresholding and

compute the F-score by also thresholding the ground truth votes (e.g. >2 votes is labelled as

prominent), Pearson correlation is preferred because our task involves the prediction of degree

of prominence.

We use ensembling for reducing model bias: the predictions of 1a, 1b, 1c and 1d are

averaged to get the final prediction for the test folds 5 and 6. Similarly, the models 2a, 2b, 2c,

2d and 3a, 3b, 3c, 3d give predictions for test folds 1, 2 and 3, 4 respectively. The mean and

standard deviation of these three Pearson correlation values are finally reported.
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6.2 Loss function

The Mean Squared Error (MSE) between the ground truth and the model prediction (both in

range 0-1) is minimised:

LMSE =
B

∑
n=1

wn

∑
i=1

(ŷn
i − yn

i )
2 (6.1)

where B is the batch size, wn refers the number of words in the nth utterance while ŷn
i and

yn
i are the predicted and ground truth values respectively for the ith word in the nth utterance.

For MTL, the final loss is a convex combination of the prominence MSE loss (Lprominence)

and phrase boundary MSE loss (Lboundary) i.e.

Ltotal = αLprominence +(1−α)Lboundary (6.2)

where α is a hyperparameter which controls the trade-off between performance on the main

task and the auxiliary task. For the single-task experiments, α = 1.

6.3 Hyperparameter settings

The hyperparameters for the CNN model are tuned for performance on the validation sets.

Table 6.2 lists the range of hyperparameters which were tried out, along with some intuition

behind their choice. We found the optimal configuration to be: 4 CNN layers, each consisting

of 32 filters of kernel width 51, stride 1 and max pooling with kernel size of 3.

For the GRU, it was found that a 3-layer, 256-dimensional bidirectional GRU with dropout

of 0.5 at each output layer (except the last layer) consistently gave the best performance. The

hyperparameters of the GRU and the subsequent FC layers are fixed for all experiments.

For training, Adam [63] optimizer is used with a learning rate of 0.001. Batch size is
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Table 6.2: Range of various hyperparameters for tuning.

Hyperparameter Min Max Intuition

Total CNN layers 2 8 Deep networks can extract sophisticated patterns

Number of CNN/Sinc filters 16 128
More filters increases expressive power of CNN

at the cost of overfitting

CNN/Sinc Kernel width 7 151 Influences the receptive field

Pooling width 2 4
Temporal resolution reduces with higher pooling

but noise is also suppressed

Stride 1 2

Reduces dimensionality and overfitting.

Higher pooling preferred over stride since

there is loss of information for stride > 1

set to 64 and the model is trained on a single NVIDIA GeForce GTX 1080. Early stopping is

used on the validation set with patience set to 12 epochs i.e. if the Pearson correlation does not

increase by more than 0.002 for 12 epochs, we stop training and choose the model with the best

performance observed so far for testing. The random seeds for PyTorch, Numpy and the default

Random library in Python are manually set for reproducibility purposes.

30



Chapter 7

Results and Discussion

This chapter presents the results of all the experiments carried out in this work. We begin

with single-task learning architectures and observe a performance improvement due to Sinc

convolution. Next, multi-task architectures and their results are discussed. Finally, we test the

effectiveness of lexical information and their complementarity with acoustic features.

7.1 Single-task learning

We first examine the performance of 34 word-level acoustic-prosodic features (A34, discussed

in Section 2.1) which are computed on the acoustic contours of pitch, intensity and spectral

shape versus time as well as various segmental durations including pauses. These are obtained

by a two-stage feature selection procedure, as detailed in [1]. The performance of the baseline

system, which uses a Random Forest classifier on A34, is reported in row 1 of Table 7.1. We

also test the same A34 set of features with a bidirectional GRU (BGRU) to study whether the

implicit ‘learning’ of word context can further boost performance (row 2). We note that the

performance jump from row 1 to row 2 indicates a clear improvement with the BGRU model,
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Table 7.1: Prominence detection performance of different architectures for single-task learning

on the test set. Standard deviation < 0.01 for all models.

No. Input Acoustic Layer 1 Pearson correl.

model (type, width, stride)

1. A34 RFC - 0.696

2. A34 GRU - 0.726

3. Wav CRNN Standard, 51, 1 0.692

4. Wav CRNN Sinc, 51, 1 0.712

5. Wav CRNN Sinc, 31, 2 0.721

6. A34 and Wav CRNN Sinc, 31, 2 0.735

indicating the value of learned context over that explicitly represented within the A34 feature

computations.

Next, we evaluate the performance of the CRNN model operating directly on the speech

waveform. For CRNN models, the number of filters in all CNN and Sinc layers is 32 while pool

size is 3. For layers 2, 3 and 4, the hyperparameters are fixed (as stated in Section 6.3) while

Layer 1 variations are reported here in terms of Pearson correlation.

From row 3, we can conclude that the performance of the CNN model is close to that

of the RF classifier, which is an encouraging starting point. A rise in the Pearson correlation

can be seen with the Sinc layer replacing the (unconstrained) first convolutional layer (while

keeping the number of filters, filter width and stride unchanged). A reduction of the Sinc filter

widths to 31 samples (a window of approximately 2 ms) gave a further improvement, especially

when the stride was concurrently changed to 2 samples from 1 sample. This is consistent with

the observations of previous work that smaller filter widths in the Sinc layer are superior in

the context of speaker recognition [32]. While this seems counter-intuitive given that auditory

filter impulse responses at lower centre frequencies are of duration well over 10 ms, the reduced

frequency resolution due to the apparent truncation does not seem to harm the performance. It

is encouraging to see that the gap between waveform-learned and the hand-crafted A34 features

has been almost bridged with this tuned Sinc version.

Further, to check for any complementary information in the two representations, we con-
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Table 7.2: Phrase boundary detection performance of different architectures for single-task

learning on the test set. * indicates standard deviation > 0.01

No. Input Acoustic Layer 1 Pearson correl.

model (type, width, stride)

1. A27 RFC - 0.852*

2. A27 GRU - 0.879*

3. Wav CRNN Standard, 51, 1 0.872*

4. Wav CRNN Sinc, 51, 1 0.880

5. Wav CRNN Sinc, 31, 2 0.887

6. A27 and Wav CRNN Sinc, 31, 2 0.896*

catenate the A34 features with the 32-dimensional CNN embedding before feeding it to the

BGRU. The resulting performance that exceeds that of either. Ablation studies were carried out

by splitting A34 into 4 categories of features: pitch, energy, duration and spectral features. It

was observed that no specific contribution can be termed as dominant. This indicates the future

potential for better waveform-based feature learning, possibly with a larger training dataset.

Although the main focus of this work was prominence detection, we also report perfor-

mance for phrase boundary detection. We use identical CNN hyperparameters for the task of

phrase boundary since a grid search did not yield any significant improvement in performance

over the 3-layer, 32-channel CNN model with 32 Sinc filters of width 31 samples and stride 2

which was used for prominence detection. Results are reported in Table 7.2.

Similar to prominence detection, we observe a significant improvement in performance on

replacing the RF classifier with a GRU, thereby proving the importance of modelling context

across words. On replacing the first layer of the standard CNN model with an identical Sinc

layer, performance is comparable to that of A27 + GRU. On further tuning of the Sinc layer, the

CRNN model outperforms the hand-crafted acoustic features. This proves the robustness of

the Sinc layer for extracting task-specific features. Lastly, concatenating the A27 hand-crafted

features with the waveform-extracted features gives a further increment in performance. Similar

to prominence detection, it indicates that the hand-crafted features have some complementary

information which cannot be captured by the waveform-based models.
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Table 7.3: Prominence prediction performance of various multi-task learning architectures and

additional features. (Pearson correlation s.d. < 0.01)

No. MTL variant Pearson

and additional features correl.

1. Tuned Sinc (without MTL) 0.721

2. Fig 5.1(a) (shared Sinc) 0.727

3. Fig 5.1(b) (shared CNN) 0.726

4. Fig 5.1(c) (conditional MTL) 0.727

5. Fig 5.1(d) (shared Sinc + conditional MTL) 0.740

6. Fig 5.1(e) (shared CNN + conditional MTL) 0.724

7. Fig 5.1(f) (oracle) 0.747

8. MTL Fig 5.1(d) + A27 0.747

9. MTL Fig 5.1(d) + A34/A27 0.757

7.2 Multi-task learning

The MTL experiments reported in Table 7.3 were carried out after first tuning α . After a prelim-

inary grid search, we found that the best performance across configurations is obtained when α

is set to 0.95 in equation 6.2 (after scaling the MSE of each to bring them into the same range).

The best single-task performance is reported in row 1 for reference. We note from row 2

and row 3 that sharing either the Sinc layer or both Sinc and CNN gives a slight improvement

over single-task learning. On the other hand, an increase in performance is seen with condi-

tioned MTL when only the Sinc layer is shared while the CNN layers remain task-dependent

(row 5). This is consistent with our expectation that the lowest level features extracted from the

input waveform correspond to the basic suprasegmental attributes fundamental to all prosodic

event detection. Therefore, the parameters of the constrained Sinc layer benefit from improved

geenralisation in the multi-task setup. Neither conditioned MTL without any sharing of pa-

rameters (row 4) nor conditioned MTL with a shared Sinc and CNN (row 6) demonstrate any

substantial improvement in performance. This indicates that parameter sharing should be done

with careful consideration of the task at hand.

In row 7, the performance of the ‘oracle’ model is reported. Since ground truth labels
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Table 7.4: Phrase boundary detection performance of various multi-task learning architectures

and additional features. (Pearson correlation s.d. < 0.01). † indicates that the prominence

and boundary branches should be flipped in Fig 5.1 since these architectures are asymmetric in

terms of the primary task.

No. MTL variant Pearson

and additional features correl.

1. Tuned Sinc (without MTL) 0.887

2. Fig 5.1(a) (shared Sinc) 0.894

3. Fig 5.1(b) (shared CNN) 0.875

4. Fig 5.1(c)† (conditional MTL) 0.872

5. Fig 5.1(d)† (shared Sinc + conditional MTL) 0.873

6. Fig 5.1(e)† (shared CNN + conditional MTL) 0.876

7. Fig 5.1(f)† (oracle) 0.893

are fed to the prominence branch (instead of the phrase boundary prediction), we observe the

expected jump in performance. The gap between 0.740 and 0.747 can be attributed to imperfect

phrase boundary predictions. Hence, the value 0.747 can also be interpreted as an upper bound

on the performance of the conditioned MTL architecture with a shared Sinc layer.

In row 8 of Table 7.3, we report performance on the concatenation of the hand-crafted

acoustic features (A27) with the generated CNN embeddings at the GRU input. We expect the

boundary task to benefit from these features and in turn improve the performance of prominence

prediction. The observed improvement (from 0.74 in row 5) confirms the presence of comple-

mentary acoustic information which is not captured by the purely waveform-based architecture.

Lastly, we also concatenate the A34 features at the GRU stage in the prominence branch of the

model. The resulting Pearson correlation of 0.757 is the best acoustic model result we have

attained.

MTL results for the task of phrase boundary detection are reported in Table 7.4 (α = 0.05

for all phrase boundary experiments). We observe a slight improvement in performance on

sharing the Sinc layer. A potential explanation based on reduced overfitting of the Sinc layer

has been discussed in Section 8.1.2. However, unlike prominence detection, performance of

every conditional MTL paradigm is inferior to the single-task learning model. It aligns with our
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Table 7.5: Performance of lexical features.

Sr. Features + Model Pearson correl.

1. PoS+ 0.747

2. IS 0.732

3. PoS+ and IS 0.752

4. BERT 0.761

5. GloVe 0.76

6. GloVe and PoS+ and IS 0.765

7. MTL Fig 2(d) and A34/A27 and GloVe 0.813

expectation that knowledge of prominence is not an accurate indicator of phrase boundary. This

is because although most phrase boundary words tend to be prominent in English due to the

subject-verb-object structure of sentences, subjects and verbs can also be prominent depend-

ing on the context. As a result, knowledge of prominence is not helpful in predicting phrase

boundary. Despite feeding the ground truth prominence label instead of the predicted degree

of prominence (oracle), there is no improvement in performance over the shared Sinc model,

thereby strengthening the case for the above explanation.

7.3 Additional features

The results in Table 7.5 demonstrate the power of standalone lexical features. Both PoS+ (row

1) and IS (row 2) outperform single-task waveform-based models discussed in Table 7.1. More-

over, a further increase in performance is observed on concatenating the two (row 3), implying

the presence of complementary information in the two representations. Their performance is

close to that of the best acoustic MTL model (row 9 in Table 7.3). Although BERT has replaced

GloVe embeddings in a wide variety of NLP tasks and demonstrated good performance for

prominence detection [36], it did not give any clear improvement over GloVe in our task (row

4 and row 5). This could be attributed to very simple story texts without semantic ambiguities

that may benefit from contextualized embeddings. We note a big jump in performance in the

final row of Table 7.5, where the GloVe features are concatenated with the corresponding CNN
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embedding and hand-crafted features in each branch of the best MTL model, emphasising the

importance of lexical features in the task of prominence detection. Although this is at odds

with the expectation that beginning readers do not necessarily realize prominence correctly, it

supports the important role of the top-down expectations in raters’ perceptions.

For phrase boundary prediction, we concatenated GloVe embeddings and A27 with the

CNN-extracted features from waveform. The MTL model in Fig 5.1(a) was used since it de-

mosntrated the best MTL performance. The Pearson correlation on test was observed to be

0.927, an improvement from 0.894 obtained using the best Sinc model (row 2 in Table 7.4).

Among all the models discussed, this is the best performance obtained for the task of promi-

nence boundary prediction. Similar to prominence detection, the jump can be attributed to

complementary information present in the lexical features.
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Chapter 8

Analysis

In this chapter, we examine some properties of the proposed architecture. Firstly, a com-

parison of Sinc filters and unconstrained convolution filters is presented. We also examine the

benefit of sharing the Sinc layers in an MTL architecture. Next, we study the model predictions

as a function of various word properties to look for potential trends. Lastly, we study the effect

of batch size and learning rate, two important hyperparameters, on the training routine.

8.1 Filter Visualisation and Comparison

The weights of the first CNN/Sinc layer can be interpreted by either simply plotting the kernel

(for the time domain representation) or computing a DFT to obtain the equivalent frequency

domain response. For comparing Sinc filters with standard convolution filters, we use the single-

task learning models from row 3 and row 4 of Table 7.1. For fair comparison, both convolutions

have a kernel size of 51 and stride of 1.

To start with, we plot the frequency response of all 32 Sinc filters (Figure 8.1) and 5

unconstrained standard convolution filters (Figure 8.2) (response of more than 5 filters makes it
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Figure 8.1: Frequency domain response of all 32 Sinc filters. They are not ideal bandpass filters

due to truncation of filters in the time domain. Since they are initialised with Mel Filterbank

centre frequencies, the density of filters is high at low frequencies while they become sparse as

we move towards higher frequencies.

Figure 8.2: Frequency domain response of 5 randomly chosen standard convolution filters.

There is no discernible pattern in their frequency response.

difficult to trace any particular filter).

While Sinc filters can be ordered by their centre frequency, no such natural ordering exists

for unconstrained convolution layers. Hence, we randomly pick one filter out of the 32 and

visualise their time and frequency domain representations in Figure 8.3 and Figure 8.4.

Based on these plots, it is difficult to draw any conclusions based on the representations

(both time and frequency) of individual unconstrained convolution filters. Instead, we study

their overall behaviour by plotting the cumulative frequency response (CFR) of the learned

filters in order to understand the regions of the spectrum which are being selectively modelled.
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Figure 8.3: Time and frequency domain representation of a randomly chosen Sinc filter. It is

centred at around 4158 Hz and has a bandwidth of approximately 568 Hz.

Figure 8.4: Time and frequency domain representation of a randomly chosen standard convolu-

tion filter. The plot is not very informative since it is difficult to draw any concrete conclusion

from such a response.
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We use a procedure similar to [64] for computing the CFR (Fcum):

Fcum =
NF

∑
k=1

Fk

‖Fk‖2
(8.1)

where NF is the total number of filters (32 in all our models) and Fk is the magnitude

spectrum of filter fk for k = 1,2, ...,NF .

8.1.1 Single-task comparison

The first experiment involves a comparison between the Sinc convolution against the uncon-

strained standard convolution layer. Similar to the previous experiment, we use models from

row 3 and row 4 of Table 7.1. The filter response on test sets 5 and 6 for each of the 4 cross-

validation models is given in Figure 8.5.

As compared to the the noisy cumulative response of standard 1D convolution, the Sinc

filters have a smooth response. We see a strong response in the range (100 - 400 Hz) for

both Sinc and standard convolution, which corresponds to pitch. The first formant, around

1100 Hz, is also captured by both models. Thereafter, the frequency response for Sinc drops

smoothly (with the exception of a peak between 3000 - 4000 Hz, which corresponds to the

second formant). On the other hand, the standard conv response is very noisy. With more

parameters, the standard unconstrained convolution layer is more prone to overfitting, which is

evident in the plots.

8.1.2 Multi-task comparison

In Section 7.2, we observed an improvement on sharing only the Sinc layer in a conditioned

MTL architecture. The cumulative frequency response provides a potential justification. More

specifically, we compare the CFR of the Sinc filters in Figure 5.1(c) (conditioned MTL with

separate Sinc, CNN and GRU for prominence and boundary) vs Figure 5.1(d) (conditioned

MTL with shared Sinc and separate CNN and GRU for prominence and boundary). The filter
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(a) Model 1a from Table 6.1 (b) Model 1b from Table 6.1

(c) Model 1c from Table 6.1 (d) Model 1d from Table 6.1

Figure 8.5: Comparison of the cumulative frequency response of Sinc and standard convolution

filters of width 51 and stride 1 for single-task learning. (a), (b), (c) and (d) correspond to each

of the four models trained using 4-fold cross-validation on sub-folds 1, 2, 3 and 4. The blue

contour depicts the CFR of the standard convolution layer while the yellow contour corresponds

to the Sinc CFR.
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(a) Model 1a from Table 6.1 (b) Model 1b from Table 6.1

(c) Model 1c from Table 6.1 (d) Model 1d from Table 6.1

Figure 8.6: Comparison of the cumulative frequency response of shared Sinc filters and separate

Sinc filters for prominence and boundary. (a), (b), (c) and (d) correspond to each of the four

models trained using 4-fold cross-validation on sub-folds 1, 2, 3 and 4. The width of Sinc

filters in this case is 31 samples (optimal as discussed in Section 7.1). Dashed lines indicate the

CFR of Sinc filters which are unique to the two tasks (yellow for prominence, green for phrase

boundary) while the solid line is the CFR of shared Sinc filters.
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response on test sets 5 and 6 for each of the 4 cross-validation models is given in Figure 8.6.

It can be seen that the shared Sinc response (solid blue line) closely follows the response of a

Sinc layer trained for just prominence (dashed yellow line). However, the Sinc CFR trained for

phrase boundary (dashed green line) lacks a peak in the range 100 - 400 Hz (corresponding to

pitch) and around 1100 Hz (corresponding to the first formant). Although it is difficult to explain

why such a response was learned through backpropogation in the first place, it is not surprising

that the performance of separate Sinc filters is sub-optimal because we know from baseline

work that pitch and intensity features are crucial for the task of phrase boundary prediction.

8.2 Model predictions

The model predictions of the best acoustic model in Table 7.3 (row 9) on test folds 5 and 6 are

analysed in this section. For each word, the absolute error (L1 norm) between ground truth and

prediction is considered as the model prediction error.

In Figure 8.7(a), absolute error as a function of word duration is analysed. There seems

to be no discernible global trend: both short and long words have similar error ranges. A

slight increase in error is seen as we approach very long words (> 1.7 seconds). A potential

explanation could be that the last max-pool layer (for both Sinc and non-Sinc CNNs) results in

a loss of temporal information for very long words.

In Figure 8.7(b), we plot error as a function of the location of the word in the utterance.

There seems to be a slight upward trend near location 70. There are two possible explanations:

either the GRU fails to model long-term dependencies (leading to the possibility of replacing it

with more powerful models such as Transformers [65]) or the error is not reliable because few

utterances have more than 70 words.

Figure 8.7(c) depicts error as a function of the ground truth. The pattern is clear: error

increases with votes. Due to the skewed distribution of ground truth votes, the model primarily

focuses on non-prominent words (votes < 2). This could be alleviated by weighting the MSE

loss for each word with a weight which is inversely proportional to the count of its ground truth

label. This is especially important if we need a strong decision boundary (especially near votes

2 or 3 depending on the inter-rater agreement) so as to threshold the output and output a binary
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(a) Prediction error vs Duration (b) Prediction error vs Location of Word

(c) Prediction error vs Ground Truth

Figure 8.7: Analysis of the model prediction error as a function of various word attributes such

as duration (a), location in utterance (b) and ground truth label (c) is presented. In (a) and (b),

the dark contour represents the mean error while the light shaded extension depicts the standard

deviation. In (c), the black dots correspond to mean error while bars denote standard deviation.

The annotation at each point in (c) denotes the count of ground truth labels for each of the votes.

The best acoustic model with MTL, A34 and A27 features (row 9 of Table 7.3) is used.
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prediction (prominent or not prominent).

8.3 Loss curves

Learning rate and batch size are empirically-tuned hyperparameters which significantly influ-

ence the performance of the model. Low learning rates (and/or higher batch size) slows down

training and could prevent the model from escaping local minima on the loss surface. On the

other hand, larger rates (and/or lower batch size) can lead to unstable training due to noisy gra-

dients. Presented next are some train-validation loss curves at different learning rates and batch

sizes for a single-task learning model without Sinc (row 3 of Table 7.1). These were obtained

to stabilise training before further improving the model architecture.

In Figure 8.8(a) and (b), the learning rate is 0.01 while batch size is 8 (each figure cor-

responds to training on two different folds). It is observed that both training and validation

(referred to as test in the figure) curves are very noisy. The batch size is increased by stepping

the optimizer after every 64 samples (each batch on the GPU is still limited to 8 samples due to

memory constraints). The curve in Figure 8.8(c) is smoother but the loss quickly starts diverg-

ing. To counteract this, the learning rate is reduced by a factor of 10 to 0.001. The resulting

curves in Figure 8.8(d) are smooth and satisfactory. The validation loss decreases upto a certain

point and shows an upward trend, which is an expected sign of overfitting.
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(a) LR: 0.01, BS: 8 (b) LR: 0.01, BS: 64

(c) LR: 0.001, BS: 64

Figure 8.8: Train and validation loss curves obtained on varying the learning rate (LR) and

batch size (BS) for the single-task learning standard convolution model (row 3 of Table 7.1). In

(a), LR is high while BS is low, leading to unstable training. As we increase the batch size (b),

the plots become smoother but performance on validation oscillates. On decreasing the learning

rate (c), the plots are as desired (smooth drop in validation loss followed by gradual increase

due to overfitting).
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Chapter 9

Summary

In this work, we first reviewed the baseline which involves extensive hand-engineering

for deriving a compact set of acoustic features. We then summarised our findings of tuning a

previously proposed CNN model which operates on low-level acoustic contours. Despite the in-

corporation of a GRU for modelling dependencies across an utterance, finer positional encoding

and separate CNN fitlerbanks for distinct feature groups, the model is unable to outperform the

hand-crafted acoustic features proposed in the baseline. Inspired by this failure to extract robust

features from acoustic contours, we then propose an end-to-end deep learning model operating

directly on waveform segments for the task of prominence detection (although the architecture,

after some tuning, can be also applied for the task of phrase boundary). Our results indicate that

it is challenging to outperform the performance of hand-crafted features computed from across

the prior extracted suprasegmental contours of speech essential to prosody realization, at least

with moderate sized training datasets. However, it was found that some human audition mo-

tivated constraints such as Sinc-based convolution at the feature extraction stage can improve

the performance of deep learning models. The optimal hyperparameters for the Sinc filters

turned out to correspond to low strides and low widths (high time resolution and low frequency

resolution), confirming previous findings in [32].
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Backed by research emphasising the linguistic association between prominence and phrase

boundary, we also explored the effectiveness of various multi-task learning frameworks. It was

found that conditional MTL, in which the prominence prediction is conditioned on the concur-

rent boundary prediction, along with a shared Sinc layer for feature extraction, gives the best

performance and finally outperforms the hand-crafted acoustic features proposed in the base-

line. Moreover, on visualising the cumulative frequency response of the learned filters, we can

justify the performance benefit of Sinc filters over standard unconstrained convolution filters.

Also, the benefit of sharing the Sinc layer in an MTL framework is also evident on observing the

cumulative frequency response plots of shared Sinc filters vs separate task-specific Sinc filters.

Finally, we explored the incorporation of lexical features using two NLP embeddings,

namely BERT and GloVe, and confirmed the findings that lexical information is complementary

and further boosts performance. This indicates that the lexical identity of words guides the top-

down expectations of raters, even in the case of not-so-proficient beginning readers. An analysis

of the model error as a function of the ground truth votes shows a clear trend: as the degree of

prominence increases, the model error increases.

9.1 Future work

Over the course of this work, the following ideas were explored but could not be thoroughly

tested due to paucity of time:

• Transfer Learning: Emotion recognition and conflict detection are two related tasks which

also operate on suprasegmental features discussed in this work. We trained a CRNN ar-

chitecture [3] on two datasets: RAVDESS [66] and SSPNet Conflict Corpus [67]. The

CNN layers at the input, which ideally extract relevant acoustic features, were then trans-

ferred to our task i.e. the weights of prominence prediction CNN were initiliased using

these pre-trained CNN models. A number of considerations affect the performance: how

many layers should be shared, should the weights of the prominence CNN be frozen or

fine-tuned with a lower learning rate, etc. Since datasets with adult speech are abun-

dant, another direction which can be pursued is transfer learning from adult’s speech to

children’s speech [68].
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• Data Augmentation: The size and quality of dataset is crucial for any deep learning model.

In [34], it was found that changes in the suprasegmental attributes (such as pitch, rhythm

and intensity) across the word are more important in perceiving prominence than their

absolute values. As a result, pitch shifting in a certain range (e.g. ±50 cents) should not

affect the target labels. Similarly, we can also perturb the rate of speech (e.g. 0.9 - 1.1

times the original rate). Such augmentation can be either applied offline or on-the-fly.

In addition to the above ideas, we plan to explore the following in more depth:

• In LEAF [56], every stage in the pre-processing pipeline is parameterised. Apart from

Gabor filters (in place of Sinc or unconstrained 1D convolution), the architecture also

includes Gaussian low-pass filtering (instead of max-pooling) and per-channel energy

normalisation (instead of logarithmic compression). They found an improvement in per-

formance for a wide variety of tasks, ranging from audio classification to emotion recog-

nition.

• More sophisticated CNN architectures can be experimented with for more efficient feature

extraction. In particular, deeper networks can be trained by using skip connections, which

alleviate the problem of the vanishing gradient [69, 70].

• Transformers [65], which have replaced sequential models in almost every NLP task, are

a promising replacement for GRU. Transformers have access to the entire context, as

opposed to a GRU which, in practice, has a finite capacity for retaining memory. This can

lead to better exploitation of dependencies at the utterance level.

• In this work, acoustic and lexical features were simply concatenated. This might not be

optimal since they capture information from different domains. Instead, we can explore

attention-based mechanisms for fusing such information which comes from two distinct

modalities [71].

• Self-Supervised Learning is a popular paradigm which artificially generates labels for

a supervised task using large unlabelled datasets [46]. With access to a vast amount of

unlabelled children’s speech dataset, we can train autoencoder-style models for extracting

prosody embeddings [72, 73].
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• By disentangling speaker characteristics (such as timbre) through a separate model [73],

the prosodic event detection network can more efficiently extract features relevant to the

task of prominence and phrase boundary detection.

• Analyse the performance of various architectures as a function of the dataset size. Since

manual rating of prosodic events is time-consuming and expensive, models which can

operate on minimal labelled data can be more easily deployed. In particular, it would be

interesting to note the effect of transfer learning and data augmentation on performance

for low-resource settings.
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