
Assessing Comprehensibility of Children’s Read
Speech

Submitted in partial fulfillment of the requirements
of the degree of

Dual Degree (B.Tech + M.Tech)

by

Mithilesh Vaidya
(Roll No. 17D070011)

Supervisor:
Prof. Preeti Rao

Department of Electrical Engineering
INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

June 2022

Thesis Approval

This thesis entitled Assessing Comprehensibility of Children’s Read Speech by

Mithilesh Vaidya is approved for the degree of Dual Degree (B.Tech + M.Tech).

Examiners:

. .

Dr. Sunilkumar Kopparapu

. .

Prof. Rajbabu Velmurugan

Supervisor: Chairperson:

. .

Prof. Preeti Rao Prof. Rajbabu Velmurugan

Date: 29/06/2022

Place: Indian Institute of Technology Bombay, Mumbai, India

��%���0�җ�0)�тпѶ�спсс�рпѷфт۔����фѵфҘ

��%���0�җ�0)�тпѶ�спсс�рпѷфт۔����фѵфҘ

�0)$'�җ�0)�тпѶ�спсс�ртѷрс۔����фѵфҘ
9XQLO

https://adobefreeuserschannel.na2.documents.adobe.com/verifier?tx=CBJCHBCAABAAo2jtK61TJPMR1lK-wHaSTA0xTj3yf8L5
https://adobefreeuserschannel.na2.documents.adobe.com/verifier?tx=CBJCHBCAABAAo2jtK61TJPMR1lK-wHaSTA0xTj3yf8L5
https://adobefreeuserschannel.na2.documents.adobe.com/verifier?tx=CBJCHBCAABAAo2jtK61TJPMR1lK-wHaSTA0xTj3yf8L5
https://adobefreeuserschannel.na2.documents.adobe.com/verifier?tx=CBJCHBCAABAAo2jtK61TJPMR1lK-wHaSTA0xTj3yf8L5

Declaration

I declare that this written submission represents my ideas in my own words and where others

ideas or words have been included, I have adequately cited and referenced the original sources.

I also declare that I have adhered to all principles of academic honesty and integrity and have

not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I un-

derstand that any violation of the above will be cause for disciplinary action by the Institute and

can also evoke penal action from the sources which have thus not been properly cited or from

whom proper permission has not been taken when needed.

Date: 19/06/2022
Mithilesh Vaidya

Roll No. 17D070011

Abstract

In this work, we focus on evaluating oral reading fluency from audio recordings of read aloud

text. Apart from word decoding accuracy and speaking rate, prosody or expression is an impor-

tant indicator of the reader’s comprehension of text. The goal is to predict a fluency or compre-

hensibility score for a given speech utterance that is typically a short passage of connected text.

It is challenging because the subjectivity of scoring leads to noisy labels due to rater-specific

biases. Also, obtaining such ratings from trained experts is an expensive procedure, which pre-

vents the collection of large datasets which can be exploited by standard deep learning models.

As a result, majority of the existing literature is focused on carefully designed knowledge-based

features which are combined with classification or regression models. A Random Forest Clas-

sifier (RFC) trained on various word-level and recording-level aggregates of acoustic features

such as pitch, energy and duration and text-based features such as WCPM and lexical miscues

serves as the baseline for this work. We first experiment with deep learning alternatives for the

above features and observe performance which is comparable to RFC. One of the main goals of

this work is to replace this extensive hand-engineering with deep learning architectures to not

only reduce the complexity of the pipeline but also potentially improve performance.

Since performance of deep learning architectures scales with the amount of data, models

pre-trained on large corpora have proven to be very effective, especially in low-resource sce-

narios. We experiment with one such pre-trained model called Wav2vec2.0 which has been ex-

tensively used for ASR, emotion recognition and other speech tasks. Our simplest architecture,

operating purely on raw waveform as input, already exceeds the performance of the RFC trained

on both acoustic and lexical features. Unlike the hand-crafted features, wav2vec representations

are not interpretable. Hence, to crack open the black box that is wav2vec, we analyse the latent

information encoded in the high-level wav2vec representations by probing them for correla-

tion with the hand-crafted features which are interpretable by definition. Several expected and

unexpected results are discussed. To exploit the possibly complementary information in HC

i

features, we propose an architecture which supports concatenation of these features at each

hierarchy. We find that incorporating non-acoustic recording-level HC features give a slight im-

provement in performance. Apart from concatenation, we explore two other fusion techniques

for combining the wav2vec and HC features. An output representation from a RNN, trained

on hand-crafted word-level features, is combined with the wav2vec representation at different

levels and a slight improvement in performance is observed, thereby indicating complementary

information present in the word-level HC features. Another approach for exploiting information

in HC features is multi-task learning (MTL). Along with comprehensibility rating, we tune the

model to simultaneously predict these HC features. This nudges the model to learn intermediate

representations which capture such features, which are known to be useful for comprehensibil-

ity. The key benefit of such a framework over concatenation is that we do not require the HC

features during inference. Although we did not observe any improvement in performance, we

believe it is a powerful scalable framework which deserves more extensive experimentation. We

summarise our work in the final chapter and propose several interesting directions to pursue in

the future, including an extensive discussion on a promising self-supervised learning framework

that can exploit the large amounts of unlabelled data available.

ii

Contents

Abstract i

List of Tables vii

List of Figures ix

List of Abbreviations xiii

1 Introduction 1

1.1 Summary of Stage 1 . 6

1.2 Dataset . 6

1.2.1 Comprehensibility ratings . 7

1.2.2 ASR and manually transcribed data 11

1.3 Ensembling . 12

1.4 Evaluation metrics . 13

1.5 Outline of report . 15

1.6 Contributions . 16

2 Baseline systems with hand-crafted features 17

2.1 Hand-crafted features . 17

2.2 Neural network classifiers . 18

2.2.1 Recording-level models . 18

2.2.2 Word-level models . 20

2.3 Training details . 20

2.3.1 Loss functions . 22

2.3.2 Hyperparameters and tuning . 22

iii

2.4 Results . 23

3 Wav2vec2.0-based architecture 27

3.1 System architectures . 28

3.1.1 W2Vanilla . 29

3.1.2 W2VAligned . 30

3.1.3 Effectiveness of layers . 33

3.1.4 Fine-tuning the transformer . 34

3.2 Experimental results . 35

3.2.1 W2Vanilla . 35

3.2.2 W2VAligned . 36

4 Probing Wav2vec2.0 39

4.1 Architecture . 40

4.2 Feature sets . 40

4.3 Procedure . 43

4.3.1 Loss function . 43

4.3.2 Training all layers . 44

4.4 Results . 45

4.4.1 Recording-level probes . 47

4.4.2 Word-level probes . 47

4.4.3 Frame-level probes . 49

4.5 Concluding remarks . 50

5 HC feature concatenation 53

5.1 Architectures . 53

5.1.1 W2VCat . 53

5.1.2 RNN Fusion . 54

5.2 W2VCat results . 58

5.2.1 Recording-level HC features . 59

5.2.2 Word-level HC features . 59

5.3 RNN Fusion results . 59

iv

6 Multi-task Learning 63

6.1 Architecture . 64

6.2 Loss . 64

6.3 Results . 66

6.3.1 Recording-level auxiliary tasks . 66

6.3.2 Word-level auxiliary tasks . 68

6.3.3 Concluding remarks . 69

7 Summary 71

7.1 Final results . 72

7.2 Future Work . 72

A Wav2vec2.0 for PED 79

A.1 Wav2vec2.0-based architecture . 79

A.2 Results . 82

B Word-level pooling 85

C Timing Analysis 89

References 93

Acknowledgments 99

v

vi

List of Tables

1.1 Rating rubric used by the raters to assign a score between 0 and 5 to a given

recording. 8

1.2 List of train and validation folds when fold 1 is left out for testing. 13

1.3 List of train and validation folds when fold 2 is left out for testing. 13

2.1 List of hand-crafted features derived in [1] for comprehensibility prediction.

Note that RFC uses a subset of these features for final prediction, as chosen by

the RFECV mechanism. A few examples from each feature set are listed in the

column Examples. 19

2.2 Results on replacing the baseline RFC with a MLP consisting of a stack of

fully-connected layers operating on recording-level hand-crafted features. Per-

formance on both FA and ASR datasets is reported. Note that validation per-

formance is not reported for the RFC model. Also, Test CCC could not be

computed on the RFC models trained on the FA dataset. 23

2.3 Results on using various word-level HC feature sets. - indicates unstable train-

ing in which case we do not report test performance since models fail to converge. 25

3.1 The performance of wav2vec2-base on using various transformer outputs. Tak-

ing the mean of the embeddings across the layers or a Gaussian weighted em-

bedding performs significantly better than the output of the transformer. This

is in line with the observation in [2] that for non-ASR tasks, intermediate layer

representation encode crucial prosodic information. 35

3.2 The performance of wav2vec2-large on using various transformer representations. 36

3.3 Results of W2VAligned on using alignments from either the manually tran-

scribed text or the ASR decoded text. 37

vii

5.1 Performance on concatenating various recording-level features in the W2VCat

architecture. These results were obtained on extensive tuning of the learning

rate and the FC stacks. The optimal configuration for FC stack 4 (through which

recording-level HC features are passed) was 6 layers of 32 hidden units each. . 58

5.2 Performance on concatenating various word-level features in the W2VCat ar-

chitecture. After tuning the hyperparameters, we find that passing the word-

level features through a 4-layer stack with [96, 64, 48, 32] hidden units gives

the best performance. 60

5.3 Results of the RNN Fusion model discussed in section 5.3. Embed. and De-

cision refers to the two fusion techniques discussed in section 5.3. Pre-trained

refers to whether the two branches are initialised with weights trained for com-

prehensibility; if it is False, both branches are trained from scratch. 61

6.1 Performance of MTL model which predicts recording-level non-acoustic HC

features in an auxiliary branch. FC stack refers to the stack of fully-connected

layers which is used to predict the HC features from the utterance-level wav2vec

embedding. 67

6.2 Performance of MTL model which predicts recording-level acoustic HC fea-

tures in an auxiliary branch. 67

6.3 Results for MTL with word-level acoustic HC features as targets in an auxiliary

branch. Word-level features are passed through a stack of fully-connected layers

before concatenation with acoustic representation; the hidden units of each layer

in this stack is mentioned in column Pre-word stack. 68

6.4 Results for MTL with word-level non-acoustic HC features as targets in an aux-

iliary branch. 69

7.1 Summary of performances of all the proposed architectures, along with the

baseline. 73

A.1 Summary of PED results reported in our previous work [3]. The performance

of the best system without hand-crafted features is highlighted in bold. 81

A.2 Performance of the proposed wav2vec-based architecture for PED. MTL refers

to the two conditioning architectures shown in figure A.2. 82

viii

List of Figures

1.1 Distribution of (a) % lexical miscues (b) WCPM across the set of 1447 recordings. 7

1.2 Distribution of number of recordings per speaker. 8

1.3 Histogram of distributions by the two raters. While rater 1 (left) tends to use

the entire 6-point scale, rater 2 (right) mainly assigns ratings from the set {1, 2,

3, 4} and rarely chooses the extremes (0 and 5). 9

1.4 Distribution of ratings across the two raters. 9

1.5 Distribution of ratings on averaging the two scores obtained after rater-specific

z-score normalisation. 10

1.6 In example 1, Pearson corr. is high despite the difference in the scale of the

two variables. In example 2, Pearson corr. is high despite the difference in the

bias of the two variables. In both cases, Lin’s CCC is low since it penalises

differences in both bias and scale. Figures reproduced from [4]. 14

2.1 An example of a Random Forest Classifier with 600 trees. The predictions of

all the trees is averaged to obtain the final score. Figure reproduced from [5]. . 21

2.2 Deep learning alternatives to RFC. Both models accept HC features as input

and predict the comprehensibility rating. 21

3.1 The original Wav2vec2.0 architecture which consists of a CNN, a transfomer

and a quantisation module. It is trained on a vast corpus of unlabelled speech

using contrastive loss. Figure reproduced from [6]. 29

ix

3.2 The W2Vanilla architecture consists of a pre-trained wav2vec feature extractor,

three stacks of fully-connected layers and a pooling module which computes

a recording-level embedding from the frame-level embeddings. The pooling

mechanism could be trivial such as mean/max pooling or could be parameteric

such as a RNN or a CNN. The depth and number of units in both the FC stacks

is mentioned next to the stacks. Unless mentioned otherwise, the depth and

number of units in the first FC stack (which accepts the wav2vec features) is

fixed for all subsequent models. 31

3.3 The W2VAligned architecture extends the W2Vanilla architecture with an addi-

tional word-level representation. We now have two pooling modules and three

FC stacks. The hyperparameters of FC stacks 1 and 3 (depth and number of

hidden units) is the same as W2Vanilla. 32

3.4 Layer-wise weights generated using a Gaussian with standard deviation of 10. . 34

4.1 Architecture for the word-level probing architecture. We use W2Aligned as the

backbone since we require word level representations. 41

4.2 Architecture for the recording-level and frame-level probes. Note that we use

the W2Vanilla backbone since word alignments are not required for the frame-

level and recording-level probing. 42

4.3 Probe results for a compact set of 26 ASR features derived after RFECV. Refer

to section 2.1 for more details. 46

4.4 Probe results for 14 recording-level features derived from the acoustics and

manually transcribed dataset. For more details, please check section 2.1. The

number of features differs from the corresponding ASR set due to RFECV. . . . 46

4.5 Pearson correlation of word-level acoustic HC features and outputs of the probes. 48

4.6 Pearson correlation of word-level non-acoustic HC features and outputs of the

probes. 49

4.7 Pearson correlation between frame-level contours and probe predictions. 50

5.1 W2VCat includes the ability to concatenate HC features at various hierarchies.

FC stack 1 has the same hyperparameter settings as W2Vanilla and W2VAligned. 55

x

5.2 In decision-level fusion, the scores from the two branches are averaged to get

the final prediction. Both branches are simultaneously trained end-to-end so

that each branch can extract complementary information. 56

5.3 In embedding-level fusion, the information from the two branches is fused at a

lower-level than decision fusion. The representations from the two branches are

concatenated to obtain an embedding, which is subsequently passed through a

FC stack to obtain a comprehensibility score. Model is trained end-to-end. . . . 57

6.1 The proposed MTL framework consists of fully-connected stacks at each hier-

archy to extract hand-crafted features. On training the entire model end-to-end

for both comprehensibility prediction and HC feature prediction, we expect the

model to learn robust representations in FC stack 1 and FC stack 2. Ideally, we

can experiment with more powerful deep learning models such as RNNs and

CNNs (instead of FC stacks) for auxiliary tasks but we stick to FC stacks for

simplicity. 65

7.1 Proposed architecture which can be trained in a self-supervised fashion without

comprehensibility labels. 76

A.1 Proposed wav2vec-based architecture for prosodic event detection. 80

A.2 The two conditioning architectures for MTL. In (a), the wav2vec backbone is

shared across the two tasks. In (b), we have separate wav2vec backbone so that

the model can extract different task-specific features. 81

B.1 Implementation of mean pooling to aggregate frame-level features and obtain

word-level representation. The example consists of 3 words with F1, F2 and F3

number of frames. 86

B.2 Implementation of a generic pooling to aggregate frame-level features and ob-

tain word-level representation. 87

C.1 Time taken by base and large models on varying duration of the recordings.

On X-axis, we have an increasing number of recordings. Y-axis reports either

the total time taken (left half) or time taken per second of audi input (right

half). Results on using the base/large models are reported in the first/second

row respectively. 90

xi

xii

List of Abbreviations

HC Hand-crafted

MTL Multi Task Learning

RFC Random Forest Classifier

RFECV Recursive Feature Elimination using Cross Validation

PED Prosodic Event Detection

SSL Self-supervised Learning

WCPM Words Correct Per Minute

xiii

Chapter 1

Introduction

The ability to read is one of the most fundamental skills [7]. Most people develop this

skill in school. Since it forms the foundation for acquiring knowledge in today’s world, children

who are poor readers suffer extensively in school and everyday life. They are slow to acquire

knowledge and this has a cascading effect on their ability to interact with the world [8].

Reading ability can be assessed in various ways such as conducting exams based on a writ-

ten text. However, it places additional cognitive demands on the child to read and understand

the questions. Hence, we focus on the automatic assessment of oral reading fluency, which is

considered to be an accurate methodology for determining a child’s reading ability [7]. Chil-

dren are asked to read out a known text (also called canonical text) and their reading ability

can be assessed by analysing the fluency of the spoken utterance [9].1 Here, fluency refers to

accuracy, automaticity2, and oral reading prosody, which, taken together, facilitate the reader’s

construction of meaning.

Reading can be divided into two components: word decoding and meaning construction.

1Assuming the child has no speaking disorder such as stammer.
2Automaticity is the ability to do things without occupying the mind, allowing it to become an automatic

response pattern or habit. It comes with practice.

1

Word decoding ability can be judged by combining the speech rate (measured in words per

minute) with accuracy (number of words read correctly) to obtain a metric called WCPM (words

correct per minute) [10]. Readers with poor WCPM struggle to decode and pronounce the words

at a reasonable rate. Since word decoding ability is the first stage in comprehending text, such

readers can be immediately flagged with poor reading comprehension ability.

Once a child attains a certain level of word decoding proficiency, prosodic aspects start

gaining more importance [11]. In order to comprehend the text and make it comprehensible

to a listener, one needs to process it at a higher level; simply reading out the words is not

sufficient. This includes identification of words, relating them to words in the neighbourhood

by taking the sentence structure and syntax into account and updating one’s internal mental

model. When reading text aloud, we modulate our voice to reflect this internal process. It is

acoustically correlated with prosodic aspects of speech such as rhythm, pausing, intonation and

stress. Proficient readers tend to convey the linguistic focus and the author’s sentiments using

prosodic variations. As a result, a simple ASR-based framework which compares the ASR-

decoded text with the canonical text will be an unreliable indicator of oral reading ability since

it fails to capture the all important prosodic aspect. Thus, high WCPM is a necessary but not a

sufficient criterion for reading proficiency.

In stage 1 of this dual-degree project, we presented a deep learning solution for the sub-

task of prosodic event detection (PED). We focused on two prosodic events: prominence and

phrase boundary. Prominence refers to the phenomenon of stressing on a particular linguis-

tic unit such as word/syllable/etc. in order to convey novel information. It helps the listener

focus on a particular part of the utterance. Phrase boundary (phrasing) refers to the grouping

of words in order to convey syntactic information (analogous to punctuation in text). The two

phenomenon are important indicators of oral reading ability [12]. Our proposed system, which

outperformed a random forest classifier operating on hand-crafted features, was tested on man-

ually obtained prosodic events labels on our read speech dataset. Please see section 1.1 for more

details.

A framework which can reliably assess the reading skills of children at scale has the po-

tential for massive social impact. The identification of poor readers can help attract special

attention to them in terms of pedagogic interventions to improve their reading skills. One must

also keep the scale of this problem in mind while designing models; any human involvement in

2

the reading assessment pipeline can be a bottleneck in the overall system.

In a nutshell, a human expert (such as a language teacher) can reliably judge the reading

ability of an individual by asking him/her to read out a short paragraph or story and analysing

the recorded utterance. This task of rating an utterance on a scale of 0-5, taking into account

both word decoding ability and fluency, is referred to as comprehensibility rating.

The current work builds upon the recent Ph.D. thesis of Kamini Sabu [1] where a large set

of hand-crafted features was derived from the waveform, ASR decoded output and the canoni-

cal text for the comprehensibility prediction of read text comprising several sentences. Acoustic

features include functionals of pitch, intensity and energy at various hierarchies (word-level and

recording-level) while lexical features include word-level POS tags, miscue features, etc. and

recording-level features such as Words Correct Per Minute (WCPM) and prosodic miscue ag-

gregates. Recursive Feature Elimination using Cross Validation (RFECV) is used in tandem

with a Random Forest Classifier (RFC) to derive a compact set of features of highly relevant

features. The best system, operating on features derived from the waveform and manually

transcribed text, reported a Pearson corr. of 0.777. However, such a system has a few draw-

backs. Firstly, the feature extraction stage has multiple independent components which cannot

be jointly optimised for the task of comprehensibility prediction. Secondly, extracting such fea-

tures requires significant domain knowledge. Thirdly, since the feature space is very large, we

might miss out on important features or patterns in the data when using hand-engineering.

With the advent of deep learning, end-to-end models trained on vast datasets have outper-

formed traditional methods in almost every domain. Their key promise is the ability to learn

powerful representations directly from data. Backpropagation enables joint optimisation of var-

ious components of the system in an end-to-end fashion. Minimal hand-engineering ensures

that the most relevant features are automatically learned from raw data.

Zhou et al. [13] (of Educational Testing Services) proposed a deep learning model for flu-

ency assessment of non-native English speakers. The last time step output of a bidirectional

LSTM, operating on frame-level contours (such as F0, loudness, MFCCs, etc.) is extracted. It

is concatenated with utterance-level hand-crafted features (such as fluency, grammar and vo-

cabulary use) and passed through a simple linear layer to predict a 4-point score for 45 seconds

of spontaneous speech. They observed an improvement of around 1% improvement over the

use of hand-crafted features. An improved architecture was subsequently proposed by the same

3

group in [14]. Word-level acoustic features (such as mean pitch) and lexical features (GloVe

embeddings of ASR hypothesis) are input to feature extractors such as CNNs and attention-

augmented RNNs. The output of each modality is concatenated and passed through a linear

regression layer to predict the score. They observed that BLSTM, coupled with an attention

layer, significantly improved performance. A similar approach is adopted by [15]. Outputs of

the acoustic branch, consisting of a CRNN operating on spectrograms, and a BLSTM, operating

on GLoVe embeddings, are fused with a novel attention fusion network. The attention weights

can be interpreted as the importance of each modality in predicting the final score. Lastly, sep-

arate BLSTMs are proposed in [16] for modelling Delivery, Language use, and Content in an

automated speech scoring system. Each response in the dialogue is rated separately by the three

sequential models. The final speech proficiency score is obtained by fusing the three subscores.

Their proposed system attained a Pearson corr. of 0.747, an improvement of 0.063 over the

RFC baseline operating on hand-crafted speech features [17]. Note that all the above systems

operate on some set of hand-crafted features, be it at the frame, word or recording level.

In this work, we propose a deep learning framework for automatic reading fluency assess-

ment. Our model is based on a recently proposed self-supervised model called Wav2vec2.0 [6]

(referred to as wav2vec herafter). Pre-trained on a large unlabelled speech corpus in a self-

supervised fashion, wav2vec generates a robust frame-level representation of speech. In this

work, we use the pre-trained model to extract frame-level features and experiment with vari-

ous deep learning modules on top to predict the comprehensibility rating. The simplest model,

which extracts wav2vec embeddings from waveform, transforms them using a stack of fully-

connected layers and uses mean pooling to obtain a recording-level representation, was already

found to outperform a RFC trained on both lexical and acoustic features. This encouraging

result motivated us to stick to a wav2vec backbone.

A major drawback of deep learning systems is their black-box nature. Unlike hand-crafted

features, which are interpretable by definition, deep learning representations are opaque. De-

spite superior performance compared to traditional techniques, it is difficult to reason why a

deep learning model predicted a given score. This presents a major challenge for any attempts

to improve the model by bringing in complementary information. Recently, works such as [18]

have attempted to tackle this issue by calculating the effect of tweaking a particular input feature

to understand it’s effect on the final output. On the other hand, in [19], the authors analyse the

4

acoustic feature representations of a CNN trained for prosodic event detection by regressing HC

features such as duration and energy. We propose a similar methodology for wav2vec represen-

tations. Linear probes consisting of fully-connected layers are added on top of representations

(derived from wav2vec) at various hierarchies to predict the HC features. On inspecting the

Pearson correlation of the probe output and the HC features, we can draw conclusions regard-

ing the nature of information captured by the wav2vec representations.

Various studies have demonstrated the effectiveness of using both acoustic and lexical

information for the task of speech emotion recognition [20, 21, 22]. Similarly, for comprehen-

sibility prediction, we observe an improvement over the purely acoustic model on incorporating

various lexical features [1].

To inspect if such hand-crafted features contain any additional information, we concate-

nate them at various hierarchies (word-level and recording-level) to check for any improvement

in performance. These are not limited to lexical features. For example, in [2] low-level descrip-

tors (frame-level features such as pitch, jitter, formant energies, etc.) improve performance on

concatentaion with wav2vec embeddings. In our case, we see a slight improvement on using

non-acoustic recording-level features. Simple concatenation of lexical features with word-level

wav2vec representations did not improve performance. Hence, we propose two alternate tech-

niques for fusing the lexical and acoustic modalities. A marginal improvement is observed on

introducing a parallel RNN branch operating on word-level HC features (along with the original

wav2vec branch).

By combining the insights from the feature concatenation experiments and probing ex-

periments, we propose a multi-task learning framework for learning better representations. By

adding auxiliary tasks for predicting HC features at various hierarchies and training the model

end-to-end with comprehensibility rating as the primary task, we nudge the model to learn bet-

ter internal representations. However, we did not observe any improvement in performance and

we discuss a few possible reasons for the same.

Lastly, we summarise our work and present the best performance of each of the proposed

systems, along with the baseline. We then propose a few interesting directions to pursue, along

with an extensive discussion on a promising self-supervised model which can exploit unlabelled

data.

5

1.1 Summary of Stage 1

For the task of prosodic event detection, a random forest classifier operated on a large set of

hand-crafted features which were derived on incorporating extensive domain knowledge [23].

In stage 1 of our work, we replaced this system with a convolutional recurrent neural network

(CRNN) operating directly on segmented speech waveforms. Sinc-based filtering, along with

multi-task learning for exploiting the linguistic association between prominence and phrase

boundary, helped the model outperform a GRU operating on hand-crafted features. For more

details, please refer to our work which was presented at ICASSP 2022 [3].

We used this system to detect word-level prosodic events. Word-level prosodic miscue tags

and recording-level aggregates of prosodic miscues such as F-score, precision, recall, etc. were

computed by comparing the predictions with the canonical text information structure (whether

a word should have been prominent or phrase break). As discussed in the introduction, these

are reliable indicators of oral fluency. Subsequently, we tried out a wav2vec-based architecture

for the task of PED. We observed performance superior to the Sinc+MTL model. More details

regarding the performance of wav2vec for PED can be found in Appendix A.

1.2 Dataset

The dataset used in this work is identical to that used in [1]. We review the salient character-

istics of our dataset here. Our dataset consists of recordings collected from various schools in

Maharashtra. All students belong to the age group of 10-14 years with English as the second

language studied in school. We apply two filters in order to obtain the final dataset: firstly, all

recordings have a WCPM (words correct per minute) of over 70. Secondly, we only consider

recordings with a lexical miscue rate which is below 15% (lexical miscue rate refers to the total

number of word-level omissions, insertions and substitutions in the manually transcribed text

with reference to the canonical text). We apply these two filters since recordings which do not

meet either criteria are considered incomprehensible due to low accuracy and rate.On applying

these criteria, we have 1447 recordings read by 165 students from a pool of 148 unique para-

graph texts. Each paragraph has 50-70 words. The duration of the recordings varies from 12

6

Figure 1.1: Distribution of (a) % lexical miscues (b) WCPM across the set of 1447 recordings.

seconds to 56 seconds with a mean recording duration of 25 seconds and standard deviation

of 8 seconds. The total duration of the dataset is approximately 10 hours. The distribution of

WCPM and % lexical miscue is given in figure 1.1. Both parameters are (moderately) uniformly

distributed.

The distribution of the number of recordings per speaker is given in figure 1.2. We see

that the final set of recordings contains more than 50 recordings for a couple of speakers, while

most speakers have less than ten recordings.

1.2.1 Comprehensibility ratings

Each recording is independently rated by two English language teachers on a scale of 0-5. The

rating rubric given in table 1.1 is similar to the one prescribed by NAEP [24].

As seen from the histogram in figure 1.3, the two raters have a different approach; rater

1 utilises the entire 6-point scale while rater 2 tends to focus on the 1, 2, 3, 4 range. Another

way to visualise this difference is by plotting the distribution of the ratings across the two raters

(figure 1.4). A non-diagonal plot is an indicator of rater-specific bias.

To remove this bias, we Z-score normalise the ratings of each rater separately and take the

7

Figure 1.2: Distribution of number of recordings per speaker.

Rating Interpretation

level

0 random grouping, pauses in wrong places, incomprehensible to the listener

1 poor grouping by and large with glimpse of good grouping in

one or two places. The underlying reason could be word difficulty.

2 better grouping but still not perfect in all places.

3 grouping is good but stresses are wrong.

4 basically a good reader, some local slips that may be attributed

to first-time reading of the given text. This level can be treated as the benchmark.

5 exceptional (could be a practiced child who does speech/elocution training).

Can’t rate reserved for unusual cases such as the audio does not contain

the child’s speech, volume is too low, too noisy, too short, etc.

Table 1.1: Rating rubric used by the raters to assign a score between 0 and 5 to a given recording.

8

Figure 1.3: Histogram of distributions by the two raters. While rater 1 (left) tends to use the

entire 6-point scale, rater 2 (right) mainly assigns ratings from the set {1, 2, 3, 4} and rarely

chooses the extremes (0 and 5).

Figure 1.4: Distribution of ratings across the two raters.

9

Figure 1.5: Distribution of ratings on averaging the two scores obtained after rater-specific z-

score normalisation.

mean of the ratings as the final label. In other words, for a given utterance,

ymean = (
y1 �µ1

s1
+

y2 �µ2

s2
)/2 (1.1)

where y1 is the original (integer) rating by rater 1 and µ1 and s1 are the mean and standard

deviation respectively of the entire set of ratings by rater 1 (similar terminology for rater 2).

ymean is the final averaged rating. Note that ymean 2 R while y1,y2 2 Z. For training, we use

min-max normalisation to ensure that the labels ymean belong to the range [0, 1]:

ytrain =
ymean �min
max�min

(1.2)

where min = -1.9 and max = 3.91 are obtained from the set ymean from the set of 1447

ratings.

The final averaged continuous rating distribution is given in figure 1.5. By removing the

rater bias and providing a richer set of continuous targets as ground truth instead of rounding

them up to integers, we expect the model to learn fine-grained differences between utterances.

To ensure that the final predictions are interpretable on the original 6-point scale, we per-

form reverse normalisation as mentioned in [1]. To do so, we compute the mean (µboth) and

10

standard deviation (sboth) of the entire rating set consisting of ratings from both speakers. Then,

during inference, the model prediction which lies between 0 and 1 is first reverse-normalised to

undo the min-max normalisation:

y
0
= y⇤ (max�min)+min (1.3)

where y is the model prediction, min = -1.9, max = 3.91 (from equation 1.2) and y
0

is the

rating after removing min-max normalisation. Then, we undo the rater-bias normalisation:

y f inal = y
0 ⇤sboth +µboth (1.4)

where y f inal is the final continuous prediction. Note that it need not belong to the range

[0, 5]. Values outside this range are clipped to [0, 5].

1.2.2 ASR and manually transcribed data

As discussed previously, lexical fluency is an important factor which contributes to the compre-

hensibility score. The spoken words can be compared with the intended (canonical) text that the

student was supposed to read. This comparison yields lexical errors made by the student, which

is an important indicator of lexical fluency. We need an Automatic Speech Recognition (ASR)

system to achieve this. Moreover, ASR also provides the word and phone alignments that help

compute acoustic features across different entities like phone, syllable, word, and word group.

The ASR system consists of two components: acoustic model and language model. A

Time Delay Neural Network (TDNN) is used as the acoustic backbone [25]. It is trained on 80

hours of Indian English Adult Speech made available through the IITM English ASR challenge

by the Speech Processing Lab of IIT Madras. The model is further adapted on 30.5 hrs of

children’s English reading data by selective fine-tuning of layers. A tri-gram language model

11

trained on canonical story texts read by children forms the second component of the entire

system. For more details, please see section 5.2 of [1]. The word error rate of the ASR system

on our comprehensibility dataset is 5.55% (section 5.3 of [1]).

Two versions of hand-crafted features are obtained:

• ASR: The ASR-decoded text and the subsequent word alignments are used for generating

all recording and word-level acoustic and lexical features.

• FA: The recordings are manually transcribed and then aligned to the manual transcript.

The hand-crafted features are subsequently extracted.

The ASR and FA dataset mainly differ in the non-acoustic features. For example, lexical

miscue features such as number of miscues, hesitations, etc. will be more accurate for the FA

dataset since the ASR-decoded text will be error-prone.

1.3 Ensembling

We use ensembling to reduce model bias and improve performance. The dataset is split into 6

speaker non-overlapping folds. One fold is left out as the test set. Among the remaining 5 folds,

we train 5 models in a cross-validation manner i.e. one fold is further left out as the validation

set while one model is trained on the rest of the four folds. The validation performance on this

left out fold is used for early stopping while mean validation performance across all the models

is used for hyperparameters tuning. Refer to tables 1.2 and table 1.3 for a detailed split of the

folds.

To generate results on the test set, we average out the predictions of the 5 models. For

example, let Ox
y denote the output of model x.y on test fold x when fold y is left out for validation

and the rest are used for training.

Final prediction on test fold 1 = (O1
1 +O1

2 +O1
3 +O1

4 +O1
5)/5.

Similarly, for test fold 2, we have:

Final prediction on test fold 2 = (O2
1 +O2

2 +O2
3 +O2

4 +O2
5)/5.

12

Model name Train folds Validation fold (for early stop) Test fold

1.1 3,4,5,6 2 1

1.2 4,5,6,2 3 1

1.3 5,6,2,3 4 1

1.4 6,2,3,4 5 1

1.5 2,3,4,5 6 1

Table 1.2: List of train and validation folds when fold 1 is left out for testing.

Model name Train folds Validation fold (for early stop) Test fold

2.1 3,4,5,6 1 2

2.2 4,5,6,1 3 2

2.3 5,6,1,3 4 2

2.4 6,1,3,4 5 2

2.5 1,3,4,5 6 2

Table 1.3: List of train and validation folds when fold 2 is left out for testing.

1.4 Evaluation metrics

For tasks which involve the prediction of continuous values, Root Mean Square Error (RMSE)

and Pearson correlation are two common metrics which are used to evaluate the performance of

a system. We discuss the benefits and drawbacks for both metrics and propose to instead track

the performance of our models using a metric called Concordance Correlation Coefficient.

Pearson correlation is a common metric for tracking the performance of a regression

model. It is designed to capture a linear relationship between two variables and hence is in-

variant to scale and bias. If XT
1 and Y T

1 are two time series of length T with Pearson correlation

r , aXT
1 +b (where a and b are scalars) and y will also have a Pearson correlation of r . If we con-

sider Y T
1 to be the ground truth comprehensibility ratings and XT

1 to be the model predictions,

Pearson correlation is not a sufficient metric. 3 This is because in order to deliver a final score,

3In principle, it could be possible to use Pearson correlation as a metric, along with a small validation dataset

to correct for scale and bias. However, it will complicate the procedure of choosing the best models.

13

(a) Example 1 (b) Example 2

Figure 1.6: In example 1, Pearson corr. is high despite the difference in the scale of the two

variables. In example 2, Pearson corr. is high despite the difference in the bias of the two

variables. In both cases, Lin’s CCC is low since it penalises differences in both bias and scale.

Figures reproduced from [4].

we want the predictions to match the interpretable rating scale which is used for labelling the

utterances. In other words, it is desired that the model predictions are scale-free and bias-free.

Although RMSE is a natural choice to alleviate this issue, it is sensitive to outliers. More-

over, it is dependent on the scale and bias of the rating scale and hence comparing performance

across datasets which use different rating scales is not possible. Competitions for related tasks

such as speech emotion recognition now use a metric called Concordance Correlation Coeffi-

cient (CCC) for evaluating models [26].

CCC is a combination of Mean Squared Error (MSE) and Pearson correlation. For two

time series x and y, CCC is defined as:

CCC(x,y) =
2rxysxsy

s2
x +s2

y +(µx �µy)
2 (1.5)

where rxy is the Pearson correlation between the two series, sx and sy are the standard

deviations of the two series and µx and µy are the corresponding means. The s terms penalise

the model when the scales of the two series are mismatched, the µ terms penalise the model

for the bias while r captures the correlation. It is bounded between [0, 1] and is hence highly

interpretable; higher the value, higher the performance.

14

For the aforementioned reasons, we use CCC [27] as the main evaluation metric. We

report the Validation CCC, Test CCC and Test Pearson4. Mean and standard deviation for test

is calculated across the 6 test folds while for validation, it is reported across all 30 trained

models.

1.5 Outline of report

The report is organised into 7 chapters and 3 appendixes as described below.

In Chapter 1, we introduce the problem, discuss the dataset, our training methodology,

evaluation metric for reporting performance and summarise our contributions.

In Chapter 2, the baseline model and the hand-crafted features on which it operates is

discussed. We then propose deep learning alternatives which operate on the same set of hand-

crafted features. Also, we report important training details such as loss functions and procedure

for hyperparameter tuning. Lastly, results for the above models are presented.

In Chapter 3, we propose our first Wav2vec2.0-based architecture. We further discuss a

tweaked version and the choice of layers from which wav2vec representations are extracted.

Results are subsequently discussed.

In Chapter 4, we discuss a technique for interpreting the information encoded in the la-

tent wav2vec representations. We probe for known hand-crafted features which led to some

interesting observations.

In Chapter 5, we present two architectures for concatenating the hand-crafted feature sets

at frame, word and recording-level. We then discuss the performance of both models. Our best

performing system can be found in this chapter.

In Chapter 6, we propose a multi-task learning framework for learning more robust repre-

sentations by exploiting the hand-crafted features in an auxiliary branch.

In Chapter 7, we summarise our work, list the performances of every architecture dis-

cussed in this work and propose a few directions to explore in the future, along with a promising

4We still report Test Pearson since it is a common evaluation metric for regression tasks.

15

self-supervised framework.

In Appendix A, we discuss a wav2vec-based architecture for prosodic event detection

(PED), a potential replacement for the PED work done in stage 1.

In Appendix B, implementation issues for pooling frame-level representations to obtain

word-level representations is discussed.

In Appendix C, a preliminary analysis of the time taken by W2Vanilla is presented.

1.6 Contributions

• Our work is the first to propose an end-to-end trained waveform-based model for the task

of oral reading fluency assessment which does not involve any feature extraction, thereby

significantly simplifying the overall pipeline by learning the features entirely from the

data.

• Unlike other approaches which train a model from scratch, our architecture is built on

top a pre-trained model and hence we believe it can provide very good performance in

data-scarce scenarios too.

• We demonstrate a deep learning framework that outperforms the baseline RFC model,

based on hand-crafted features, by a large margin (an improvement of 0.06 absolute in

Pearson correlation)

• With the help of probes, we examine the nature of information which is being captured

by the black-box Wav2vec2.0-based model tuned for comprehensibility.

• We investigate potentially complementary information in the previously proposed knowledge-

based hand-crafted features via fusion.

• Apart from comprehensibility, we attempt to predict a rich set of knowledge-based hand-

crafted features at word-level and recording-level in a multi-task learning (MTL) frame-

work to make the representations more robust.

• Finally, we summarise the performance of our systems, propose a self-supervised learning

framework and provide other interesting directions for future work.

16

Chapter 2

Baseline systems with hand-crafted features

In this chapter, we present various baseline models which operate on hand-crafted (HC)

features developed in the previous work [1]. These features are extracted from a combination of

the input waveform, ASR output and the canonical text. Our goal is to eventually replace such

extensive hand-engineering with end-to-end deep learning models.

2.1 Hand-crafted features

The HC features used in this work were derived in [1] for the task of comprehensibility predic-

tion. They capture aspects such as lexical accuracy, speaking rate and prosody and are briefly

described next. A TDNN-based ASR model, along with a language model for Indian English,

is used to obtain ASR-decoded text. Frame-level contours such as pitch, energy, intensity, etc.

were extracted from the waveform using traditional signal processing techniques. Using word

boundaries obtained from ASR alignments, these contours are aggregated at the word-level and

the recording-level using functionals such as mean, max, standard deviation, etc. On the other

hand, the ASR-decoded text (or manual transcripts) are used for obtaining various word iden-

17

tity features such as POS tags. On comparing the decoded text with the canonical text, we can

obtain miscue tags for each word. They are also aggregated at the recording-level to obtain

high-level lexical features such as number of insertions, deletions, hesitations, etc. Silence,

pause and duration features at the syllable and word level are obtained from a combination of

acoustic and lexical information. In stage 1, we presented a waveform-based model for Prosodic

Event Detection. This model is used for obtaining prominence and phrase boundary predictions

for each word in the corpus (check section 1.1 for more details). On comparing them with the

information structure, we obtain prosodic miscue tags for each word. We then aggregate it at

the recording-level using measures such as precision, recall and F-score.

A list of such features according to their hierarchy and a brief description of the same is

given in table 2.1. Refer to [1] for more information. We train deep learning models on these

sets of hand-crafted features.

A compact set is further derived using Recursive Feature Elimination Cross Validation

(RFECV). A Random Forest Classifier (RFC) trained on this compact feature set serves as our

first baseline1. A schematic of a RFC is given in figure 2.1.

2.2 Neural network classifiers

In this section, we simply replace the RFC with neural network alternatives which operate on

the same set of hand-crafted features.

2.2.1 Recording-level models

We experiment with a simple MLP-based architecture which operates on recording-level fea-

tures. Various feature sets are passed through a stack of fully-connected (FC) layers (with

dropout for regularisation and PReLU as activation function2). The FC stack is similar to the

1We train the deep learning models on the entire set instead of this compact set; the model should ideally learn

to ignore features which are not helpful.
2Since it degraded performance, we skipped BatchNorm layers in the stack. A potential explanation is the

shallowness of our FC stacks - BatchNorm is helpful for stabilising training of very deep networks and hence may

18

Hierarchy Feature set # features Examples

Recording Lexical miscues 8 # insertions, deletions, hesitations

A-P contour

and Pause
88

Functionals of pause, aggregates of

word pitch properties across recording

Prosodic miscue 46
Precision and Recall of word-level

prominence and phrase boundary

Rate 5 WCPM, speed variation

Word
A-P contour

(Acoustic)
29

Various band intensities, pitch contour

correlation with various shapes

Duration 11
Functionals of silence and syllable

durations

Lexical identity

(LexId)
16 POS tags, content word flag

Lexical miscues

(LexMisc)
4

Binary flags C/I/S for correct/inserted/

substituted, noInsertions before

Prosodic miscues

(PEDMisc)
6

Information structure, automatic prosodic

event predictions obtained from stage 1,

Prosodic miscue

Frame Acoustic 19
Pitch, Energy, Intensity, HNR,

Auto-correlation

Table 2.1: List of hand-crafted features derived in [1] for comprehensibility prediction. Note

that RFC uses a subset of these features for final prediction, as chosen by the RFECV mecha-

nism. A few examples from each feature set are listed in the column Examples.

19

Pointwise Conv1D module used in [2]. The final layer consists of a single output neuron which,

on Sigmoid activation, is squished to the range (0, 1). This denotes the final comprehensibility

score prediction. The architecture is given in figure 2.2(a).

2.2.2 Word-level models

To obtain a recording-level score from word-level features, we need a sequential model which

can accept a variable-length input and extract patterns from the sequence. For simplicity, we

use a simple Recurrent Neural Network (RNN) for this purpose. At every time step, a feature

vector corresponding to each word in the utterance is fed to the RNN. This vector can include

any combination of word-level features mentioned in table 2.1. The output of the RNN is pooled

using mean pooling, max pooling or by extracting the last time step output to get a recording-

level representation. The final representation is passed through a stack of FC layers to obtain

the comprehensibility score. Refer to figure 2.2(b) for the architecture.

After tuning the hyperparameters, we use max pooling of the RNN outputs as the pooling

mechanism since it gave the best results. A 1-layer bidirectional GRU with 250 hidden units is

used as the sequential model. The max pooled output is passed through a fully-connected layer

with 300 hidden units, followed by a single output neuron to obtain the final comprehensibility

prediction.

2.3 Training details

In this section, we discuss some crucial aspects of training the neural network models. These

include choice of loss function, procedure for hyperparameter tuning, the optimiser used for

computing gradients, etc. Note that the discussion is applicable to not just the baseline models

but all subsequent models proposed in this work.

not be required in our case

20

Figure 2.1: An example of a Random Forest Classifier with 600 trees. The predictions of all the

trees is averaged to obtain the final score. Figure reproduced from [5].

(a) Recording-level MLP (b) Word-level BGRU

Figure 2.2: Deep learning alternatives to RFC. Both models accept HC features as input and

predict the comprehensibility rating.

21

2.3.1 Loss functions

We experimented with 3 loss functions: Mean Squared Error (MSE), Pearson loss (= 1 - Pear-

son correlation) and Concordance Correlation Loss or CCL (= 1 - CCC). Although it sounds

counter-intuitive, it has been shown in literature that minimising MSE does not necessarily

maximise CCC [28]. Studies such as [29] have demonstrated the effectiveness of using CCL to

maximise CCC (instead of using MSE as a loss for maximising CCC). Since we consider CCC

to be our main evaluation metric, we use CCL for all experiments.3

2.3.2 Hyperparameters and tuning

After trying out various activation functions such as ReLU, PReLU, Swish and Tanh, we stick

to PReLU (due to a slight improvement over ReLU) for all experiments. On extensive tuning,

we found a dropout probability of 0.2 to be optimal and is hence fixed for all FC stacks.

For training, Adam [30] optimizer is used. The learning rate is set to 0.001 unless specified

otherwise. Batch size is set to 128 (after tuning) and models are trained on a single NVIDIA

GeForce GTX 1080. Early stopping is used on the validation set with patience set to 10 epochs

i.e. if the CCC does not increase by more than 0.005 for 10 epochs, we stop training and choose

the model with the best performance observed so far for testing. The random seeds for PyTorch,

Numpy and the default Random library in Python are manually set for reproducibility purposes.

All hyperparameter tuning experiments are carried out using the Optuna library[31]. A

range for each hyperparameter is chosen based on heuristics e.g. the range of number of FC

layers is set to [1, 8] for the recording-level MLP. For learning rate, we consider the range [1e-

5, 5e-3]. The library samples randomly from the given range and carries out an experiment.

In the initial stages, it explores the range while with more runs, it starts exploiting the best

hyperparameters found till then. Best models are chosen on the basis of validation CCC.

3We experimentally observed that for maximising Pearson correlation, MSE loss gave the best results while

Pearson loss led to very poor performance. For maximising CCC, CCL proved to be the best among the three.

22

Dataset Features Model
Val

CCC

Test

CCC

Test

Pearson

ASR Lexical miscues RFC 0.651 0.694

MLP 0.725 0.713 0.723

A-P contour+Prosodic miscue+Pause RFC 0.697 0.754

MLP 0.742 0.72 0.748

All RFC 0.736 0.774

MLP 0.769 0.767 0.777

FA Lexical Miscue RFC 0.733

MLP 0.761 0.749 0.762

A-P contour+Prosodic miscue+Pause RFC 0.756

MLP 0.746 0.727 0.76

All RFC 0.794

MLP 0.793 0.789 0.796

Table 2.2: Results on replacing the baseline RFC with a MLP consisting of a stack of fully-

connected layers operating on recording-level hand-crafted features. Performance on both FA

and ASR datasets is reported. Note that validation performance is not reported for the RFC

model. Also, Test CCC could not be computed on the RFC models trained on the FA dataset.

2.4 Results

In this section, we report performance of the RFC and deep learning models on various HC

feature sets.

RFC is trained using MSE loss, which does not always maximise CCC as discussed pre-

viously [28]. Hence, Test Pearson corr. is a more appropriate metric for comparing the perfor-

mance of a model with that of RFC.

The results of replacing the RFC with a MLP, operating on recording-level HC features,

can be found in table 2.2. We find that on simply replacing the RFC with a MLP, there is

a noticeable improvement in performance for the Lexical miscues feature set (on both FA and

ASR datasets). On the other hand, the non-miscue features do not benefit from the deep learning

23

MLP baseline. Also, on using all feature sets, performance of RFC and MLP is similar. The

performance jump on using the FA dataset instead of ASR dataset is noticeable for the lexical

miscue feature set. This is expected because as discussed in subsection 1.2.2, the FA dataset is

more accurate than ASR for miscue features such as number of miscues, insertions, hesitations,

etc. On the other hand, acoustic features are not heavily influenced by the differences in the

alignments obtained from FA and ASR dataset. As a result, there is no noticeable difference in

the performance of the MLP trained on ASR vs FA dataset. Lastly, for both datasets and for

both models (RFC and MLP), combining the two distinct feature sets improves performance.

This indicates complementary information among the feature sets.

24

Dataset Word feature set(s) Val CCC Test CCC Test Pearson

ASR Acoustic 0.654 0.659 0.676

LexId 0.394 - -

LexMisc 0.341 - -

Duration 0.700 0.703 0.714

PEDMis 0.555 0.554 0.558

LexId+LexMisc+Duration 0.722 0.727 0.738

LexId+LexMisc+Duration

+Acoustic
0.738 0.741 0.751

LexId+LexMisc+Duration

+PEDMisc
0.751 0.753 0.762

LexId+LexMisc+Duration

Acoustic+PEDMisc
0.747 0.750 0.761

FA Acoustic 0.648 0.653 0.672

LexId 0.412 - -

LexMisc 0.580 0.581 0.584

Duration 0.681 0.685 0.697

PEDMis 0.605 0.603 0.608

LexId+LexMisc+Duration 0.741 0.744 0.755

LexId+LexMisc+Duration

+Acoustic
0.745 0.75 0.762

LexId+LexMisc+Duration

+PEDMisc
0.763 0.766 0.775

LexId+LexMisc+Duration

Acoustic+PEDMisc
0.762 0.767 0.777

Table 2.3: Results on using various word-level HC feature sets. - indicates unstable training in

which case we do not report test performance since models fail to converge.

On going from from recording-level to word-level features, we see a slight drop in per-

formance, as seen in table 2.3. Given below are some key insights obtained on examining the

performance of individual feature sets:

25

• Acoustic and duration features, on their own, give good performance on both FA and

ASR datasets. On adding lexical identity and lexical miscue features, we see a further

improvement in performance for both datasets.

• A RNN trained only on lexical identity features fails to converge because word identity

features such as POS tags do not encode any information about the fluency of the utter-

ance.

• Performance on the A-P contour subset for both FA and ASR datasets is similar. This

is expected since the word-level acoustic aggregates will only slightly vary due to differ-

ences in the alignment. This is consistent with the observation regarding performance of

MLP on recording-level acoustic HC features in case of ASR and FA datasets.

• Features such as Lexical miscue benefit greatly from manual transcription. The proposed

RNN could not be trained on ASR-based Lexical miscue features while it was possible to

do so with the FA version of the Lexical miscue feature set. Also, on including feature

sets which includes lexical information (such as Lexical miscue and Lexical identity), a

model trained on FA dataset outperforms it’s counterpart trained on the ASR dataset.

• PED miscue feature set brings additional value since we observe an improvement on

concatenating them with other feature sets.

• On using all feature sets, we see a drop of 0.022 when moving from recording-level

features to word-level features for the FA dataset; for the ASR version, we see a similar

drop of around 0.026. Note that all recording-level feature sets (except a subset of the A-P

contour features) are obtained from an intermediate word-level stage (figure 8.1 in [1]).

Thus, although the word-level RNN has more capacity to extract important features on its

own from the fine-grained word-level features, it has access to slightly lesser information

than the MLP. As a result, comparing the final performance of the MLP and the RNN is

difficult.4

4We can further split the recording-level A-P contour feature set into two subsets: those which are aggregated

using word-level A-P contour features and those which are obtained directly from frame-level features. Then,

training an MLP by leaving out the latter subset will possibly lead to a fairer comparison.

26

Chapter 3

Wav2vec2.0-based architecture

Large datasets have been a crucial factor for the rise of deep learning. Deep models for

tasks such as ASR are trained on very large corpora (e.g. LibriSpeech, a popular benchmark

for ASR consists of 960 hours of speech). However, as discussed previously, we only have 10

hours of labelled data. Training models from scratch with such a limited dataset is difficult. To

alleviate this issue, we exploit a recently proposed pre-trained model called Wav2vec2.0 [6].

Wav2vec2.0 is a self-supervised model pre-trained on a large speech corpus. The ar-

chitecture is shown in figure 3.1. It consists of a convolutional neural network (CNN) and a

transformer. The CNN has 7 convolutional blocks with a receptive field of 400 samples or 25

ms of audio (16 KHz sampling rate). The raw waveform is encoded by the CNN and a latent

speech representation is generated every 20 ms (based on the stride of the CNN kernels). These

latent speech representations are then fed to a stack of transformer encoders.

The entire model (CNN and transformer) is trained end-to-end by masking some of the

latent representations and asking the transformer to predict their quantised versions from the

unmasked representations. This follows the masked language model pre-training paradigm

which is popular in NLP and is used for pre-training large language models such as BERT [32]

in a self-supervised fashion. Since the pre-training procedure is task-agnostic (not tuned for any

27

particular task such as ASR, emotion recognition, speaker verification, etc.), the model learns a

robust representation of speech at the frame-level1. One can subsequently use these embeddings

for any downstream task. The original Wav2vec2.0 paper [6] reported competitive performance

for ASR on LibriSpeech by using just 10 minutes of labelled data. A simple linear projection

layer is added on top of the wav2vec embeddings to predict phones and the model is fine-tuned

using CTC loss. The simplicity of the projection layer hints towards the information-rich nature

of the wav2vec representations.

Apart from ASR, Wav2vec2.0 has also been used for related tasks such as emotion recog-

nition and speaker recognition. In [2, 33], a pre-trained wav2vec model is used to extract frame-

level features. They are transformed using fully-connected layers, CNNs or LSTMs and pooled

using mechanisms such as mean pooling to obtain a recording-level representation. This repre-

sentation is passed through a linear layer to obtain the final score. They reported a substantial

improvement over acoustic hand-crafted features such as MFCCs and eGeMAPS for the task of

speech emotion recognition. In [34], wav2vec is used as the acoustic backbone while camem-

BERT (an NLP model) is used for analysing the text for predicting emotion labels every 250

ms. Wav2vec outperformed MFCC and eGeMaps by a huge margin on both English and French

recordings. Moreover, on fusing scores from both modalities, the authors report a further jump

in performance. A bottleneck approach is presented in [22] for disentangling prosodic informa-

tion from phonemic content and speaker identity for the task of emotion recognition. Wav2vec

features are used for extracting the prosodic embedding. For speaker recognition, various pool-

ing and wav2vec fine-tuning methodologies are presented in [35]. Similar to comprehensibility

rating, the above tasks rely on prosodic aspects of speech. Hence, the success of wav2vec on

these tasks motivated us to explore this model for our task.

3.1 System architectures

In this section, we discuss two architectures which use wav2vec. The first, called W2Vanilla,

requires only the waveform as input. The second, termed W2VAligned, introduces an addi-

1Unlike traditional features such as MFCCs, which have a limited context of say 25 ms, the transformer’s self-

attention mechanism has access to the entire utterance. Hence, although the representations are generated at the

frame-level, they are influenced by the entire utterance and not just it’s neighbourhood.

28

Figure 3.1: The original Wav2vec2.0 architecture which consists of a CNN, a transfomer and a

quantisation module. It is trained on a vast corpus of unlabelled speech using contrastive loss.

Figure reproduced from [6].

tional pooling stage at the word-level using word alignments, giving us access to word-level

representations. Both architectures are discussed next.

3.1.1 W2Vanilla

Our first wav2vec-based architecture (called Vanilla Wav2vec2.0 or W2Vanilla) only requires

the waveform from the recording as input. We extract wav2vec representations at the frame-

level, pass them through a stack of fully-connected (FC) layers and mean-pool them across

the utterance to get a single utterance-level embedding. Each layer in the stack of fully con-

nected layers consists of a feedforward network, an activation function (PReLU in our case)

and dropout. The pooled embedding is passed through another stack of FC layers with one

output neuron in the final layer, which on Sigmoid activation, can be interpreted as the compre-

hensibility score. The W2Vanilla architecture is given in figure 3.2. Key hyperparameters of

this architecture are the two FC stacks, whose depth and number of hidden units in each hidden

layer need to be tuned.

Mean pooling the frame-level representations to obtain a recording-level representation

might sound too naive since it leads to loss of temporal sequence information. We tried various

deep learning blocks such as GRUs [36] and Transformers [37] on top of the frame-level repre-

29

sentations to capture temporal information but it did not lead to any performance improvement.

A potential explanation for this is the self-attention mechanism of the Wav2vec2.0 transformer:

since it has access to the entire utterance, it can also implicitly represent temporal dependencies

in it’s frame-level outputs.2

3.1.2 W2VAligned

Instead of pooling the frame-level representation across the entire utterance, we introduce an in-

termediate hierarchical pooling stage at the word level. Word boundaries are obtained by force-

aligning the ASR-decoded text or the manually transcribed text. The wav2vec embeddings are

then pooled for each word separately to get a word-level representation. For inter-word pauses,

we can include either the pause before or after the word in it’s pooled representation. We choose

to include the pause after the word since it can assist the model in detecting phrase breaks, an

important prosodic event3. For pooling, we can use parametric models such as RNN, CNN,

etc. or non-parametric techniques such as mean pooling, max pooling, etc. The word-level

representations are passed through a stack of FC layers before pooling them again using the

previously mentioned techniques to get a recording-level representation.

By introducing such pooling, we can now bring in word-level HC features discussed in

section 5.1.1. Refer to figure 3.4 for the architecture. Apart from the input FC stack which

accepts wav2vec features and the final FC stack which outputs the comprehensibility score

(similar to W2Vanilla), we now have an additional FC stack (for transforming the word-level

representations) which requires hyperparameter tuning.

2The architecture proposed in [38] for speech emotion recognition is almost identical to W2Vanilla. It also

uses mean pooling to construct a recording-level representation from frame-level representations. We spoke to the

authors and found that they also derived a similar conclusion from their own experiments.
3Including both is also possible but since we use mean pooling to aggregate frame-level frames to obtain a

word-level representation, the model will not be able to distinguish between pre-word and post-word pauses.

30

Figure 3.2: The W2Vanilla architecture consists of a pre-trained wav2vec feature extractor,

three stacks of fully-connected layers and a pooling module which computes a recording-level

embedding from the frame-level embeddings. The pooling mechanism could be trivial such as

mean/max pooling or could be parameteric such as a RNN or a CNN. The depth and number

of units in both the FC stacks is mentioned next to the stacks. Unless mentioned otherwise, the

depth and number of units in the first FC stack (which accepts the wav2vec features) is fixed for

all subsequent models.

31

Figure 3.3: The W2VAligned architecture extends the W2Vanilla architecture with an additional

word-level representation. We now have two pooling modules and three FC stacks. The hyper-

parameters of FC stacks 1 and 3 (depth and number of hidden units) is the same as W2Vanilla.

32

3.1.3 Effectiveness of layers

There are two open-source wav2vec pre-trained models available on HuggingFace: wav2vec2-

base4 and wav2vec2-large5. They differ in two aspects: Firstly, the size of the transformer

layers: base has a stack of 12 transformer layers while large has 24 layers stacked on top of

each other. Secondly, base generates embeddings of dimension 768 while large generates 1024-

dimensional embeddings. Both are pre-trained on the same dataset (960 hours of LibriSpeech).

The output of each layer of the transformer encoder is fed as input to the next layer. We can

extract frame-level representations from either the last layer (output) or an intermediate layer.

Previous works have demonstrated the effectiveness of using intermediate layer representations.

For emotion recognition, [2] learned a weighted combination of the transformer layer outputs

and discovered that higher weights are assigned to intermediate layers. [39] investigated the per-

formance of Audio ALBERT for speaker verification and phoneme classification as a function

of the layer and reported different layers as being optimal for different tasks.

This motivated us to extract representations from various layers of the transformer for our

task. Although [2] learnt a weighted combination of the layers, we are unable to do so due to

computational constraints. Instead, we try out two additional techniques:

• Mean pooling: at each time-step, take the average of the outputs of each layer of the

transformer encoder to obtain the final frame-level embedding.

• Gaussian pooling: inspired by the weights learnt in [2], we use a Gaussian distribution

centred at the middle (e.g. between layer 12 and layer 13 for wav2vec2-large). The

weights are normalised so that they sum to 1. The variance controls how rapidly the

weights decay as we move away from the middle layer. An example distribution is given

below:

4https://huggingface.co/facebook/wav2vec2-base-960h
5https://huggingface.co/facebook/wav2vec2-large-960h

33

https://huggingface.co/facebook/wav2vec2-base-960h
https://huggingface.co/facebook/wav2vec2-large-960h

Figure 3.4: Layer-wise weights generated using a Gaussian with standard deviation of 10.

3.1.4 Fine-tuning the transformer

Generally, apart from the linear layers on top of wav2vec, the transformer module is also fine-

tuned for the downstream task to increase performance [38]. However, due to computational

constraints, we freeze the transformer and tune only the FC stacks. We did try tuning the

transformer layers by reducing the batch size and clipping the audios to only 10 seconds so that

the data could be loaded on our GPU. However, the performance was poor and it took more than

a day to train the entire model. We believe that fine-tuning the transformer layers will require

extensive experimentation with hyperparameters such as learning rate, learning rate schedulers,

etc.

34

3.2 Experimental results

In this section, we discuss the performance of W2Vanilla, W2VAligned and the layer-wise

performance of wav2vec2-large.

3.2.1 W2Vanilla

Which layer Val CCC Test CCC Test Pearson

Output 0.765 0.759 0.772

Mean 0.800 0.786 0.808

Gaussian 0.801 0.807 0.813

Table 3.1: The performance of wav2vec2-base on using various transformer outputs. Taking

the mean of the embeddings across the layers or a Gaussian weighted embedding performs

significantly better than the output of the transformer. This is in line with the observation in [2]

that for non-ASR tasks, intermediate layer representation encode crucial prosodic information.

In table 3.1, we report the performance of W2Vanilla operating on wav2vec2-base embed-

dings. Mean pooling and Gaussian pooling outperform the RFC and MLP, which are trained

on both acoustic and lexical feature sets. The implications of this result cannot be overstated;

the wav2vec-based model, without explicitly incorporating any knowledge of the canonical text

and the uttered lexical content, already outperforms extensive hand-engineered features which

incorporate both lexical and acoustic information. A potential explanation is that wav2vec, pre-

trained on a vast corpus, also captures some degree of lexical content, pause features, duration

features and prosodic events. Refer to section 4.4.1 for a more extensive discussion on the

nature of information which is captured by wav2vec.

Next, we replace the base model (12 layers, 768-dimensional embeddings) with the large

model (24 layers, 1024-dimensional embeddings). Along with mean pooling and Gaussian

pooling, we perform a layer-wise analysis of the performance of wav2vec2-large and the re-

sults are presented in table 3.2. Firstly, we see an improvement in performance on using both

35

Which layer Val CCC Test CCC Test Pearson

1 0.723 0.696 0.721

5 0.732 0.558 0.644

10 0.803 0.803 0.813

15 0.813 0.803 0.816

16 0.814 0.809 0.817

17 0.816 0.808 0.821

18 0.809 0.808 0.817

21 0.787 0.787 0.796

Output 0.77 0.772 0.778

Mean 0.813 0.814 0.823

Gaussian (20) 0.813 0.817 0.822

Table 3.2: The performance of wav2vec2-large on using various transformer representations.

mean and Gaussian pooling as we move from wav2vec2-base to wav2vec2-large. This can be

attributed to the larger capacity of the wav2vec2-large network.

The layer-wise analysis reveals another interesting property: we find a sweet spot at layer

17; performance for comprehensibility prediction drops on using the transformer outputs of

layers before or after layer 176. The performance of the output layer (layer 24) is noticeably

lower than layer 17, thereby hinting towards differences in the nature of information which is

being stored in various layers of the wav2vec transformer.

3.2.2 W2VAligned

In this section, we report the performance of the W2VAligned architecture, in which an addi-

tional pooling stage from the frame-level representations to word-level representations is intro-

duced. As of now, we use mean pooling to pool the frame-level representations and obtain a

word-level representations. Refer to Appendix B for more details regarding this choice.

6Although layer 17 gives the best validation performance, we use mean pooling for all subsequent experiments

since layer-wise analysis and Gaussian pooling was carried out later on.

36

Alignment Val CCC Test CCC Test Pearson

W2Vanilla 0.813 0.814 0.823

FA 0.808 0.778 0.814

ASR 0.804 0.781 0.815

Table 3.3: Results of W2VAligned on using alignments from either the manually transcribed

text or the ASR decoded text.

Counter-intuitively, performance slightly reduces on introducing this intermediate pooling

stage. A possible explanation is the rigid pooling mechanism, coupled with erroneous align-

ments, leads to erroneous pooling of frame-level representations to obtain word-level represen-

tations. Moreover, validation CCC on using FA dataset is slightly higher than for the manually

transcribed dataset while the trend reverses for test CCC. This possibly indicates overfitting

caused by precise word alignments of the FA dataset.

37

This page was intentionally left blank.

Chapter 4

Probing Wav2vec2.0

Hand-crafted features are interpretable by definition. On the other hand, despite outper-

forming traditional signal processing techniques on a wide range of tasks, deep learning mod-

els are opaque. The frame-level embeddings which are extracted from waveform by wav2vec

are not directly interpretable. Without understanding the nature of information which is be-

ing captured by wav2vec, it is difficult to further push the performance of model by trying to

incorporate possibly complementary information.

In [19], known acoustic features such as voicing probability and loudness are regressed

from representations of a CNN which is trained for prosodic event detection. To crack open

the black box that is wav2vec, we propose a similar approach by adding a stack of linear layers

on top of our current architecture. These layers are trained to predict HC features (discussed

previously) at various hierarchies.

The motivation for such probing is two-fold:

• By analysing the ability of wav2vec to predict HC features, we can draw conclusions

regarding the nature of information which is being encoded by the wav2vec pre-trained

model.

39

• If wav2vec is unable to capture a particular HC feature which is known to be crucial for

the task of comprehensibility prediction, we can concatenate such a feature to increase

performance.

In the subsequent sections, we discuss models for probing the presence of HC features at

various hierarchies.

4.1 Architecture

Frame-level probing can be realised by adding linear layers for each frame-level feature on top

of the transformed wav2vec features i.e. output of the first input FC stack. Refer to figure 4.2

(a) for the overall architecture. We use W2Vanilla (proposed in subsection 3.1.1) since word

alignments are not required for frame-level probing.

To analyse recording-level information, we again use W2Vanilla and add a separate stack

of fully-connected layers for each HC feature as shown in figure 4.2 (b).

For word-level probing, we use the W2VAligned model to extract word-level represen-

tations. The structure of the probes is similar: a stack of linear layers is added for each HC

feature. The architecture shown in figure 4.1.

4.2 Feature sets

Since wav2vec does not have access to ASR outputs and canonical text, we speculate that it

may be difficult to extract features apart from those in the A-P contours feature set. However,

wav2vec embeddings also capture lexical content because it can perform ASR with very mini-

mal labelled data. Hence, it might not be completely unreasonable to expect wav2vec to predict

lexical features such as POS tags. Moreover, although timing information is not explicitly in-

corporated into our architecture, it is interesting to analyse if wav2vec can capture rate features.

We probe the model for the presence of word-level and frame-level HC features discussed

in table 2.1. To narrow down the number of recording-level features, we instead choose a

40

Figure 4.1: Architecture for the word-level probing architecture. We use W2Aligned as the

backbone since we require word level representations.

41

(a) Frame-level probes (b) Recording-level probes

Figure 4.2: Architecture for the recording-level and frame-level probes. Note that we use the

W2Vanilla backbone since word alignments are not required for the frame-level and recording-

level probing.

42

compact set of 26/14 features for ASR/FA dataset obtained after RFECV. This set contains

features from all feature sets (accuracy, acoustic, prosodic and rate) and is mentioned in table

8.9 of [1].

4.3 Procedure

In this section, we describe the loss function used for training the probes and an important

discussion on the implications of training the network from scratch.

4.3.1 Loss function

We minimise the MSE loss between the model prediction and the HC features.

For recording-level features, we average the loss across all the HC features:1

Lrecording =
1

NR

NR

Â
j=1

(R j �Y R j)
2 (4.1)

where NR is the number of recording-level HC features, R j is the model’s prediction for

feature j and Y R j is the feature value (ground truth).

For word-level features, the MSE loss is computed by averaging it across both words and

features across the entire utterance:

Lword =
1

T NW

T

Â
i=1

NW

Â
j=1

(W i
j �YW i

j)
2 (4.2)

where T refers to the number of words in the utterance, NW is the number of word-level

HC features, W i
j is the model’s prediction for feature j of word i and YW i

j is the ground truth

1On tuning only the probes, minimising averaging MSE is equivalent to independently minimising the MSE

for each feature since parameters which are shared across the probes are frozen.

43

feature value.

Similarly, for frame-level features, the MSE loss is computed by averaging it across both

frames and features across the entire utterance:

L f rame =
1

FNF

F

Â
i=1

NF

Â
j=1

(Fi
j �Y Fi

j)
2 (4.3)

where F refers to the total number of frames in the utterance, NF is the number of frame-

level HC features, Fi
j is the model’s prediction for feature j of frame i and Y Fi

j is the feature

value (ground truth).

4.3.2 Training all layers

To analyse the nature of representations learnt by the comprehensibility prediction network, we

tune only the prediction heads while keeping the rest of the network fixed. In other words, the

blue layers in figure 4.1 and figure 4.2 are initialised with weights from a model trained for

comprehensibility prediction on the training data and are then frozen while the ones in green

are tuned for minimising the MSE loss between model predictions and HC features.

However, on training the entire network from scratch, we can deduce the HC features

which can be potentially extracted from wav2vec. No comprehensibility labels are used in

any stage of the training; only the HC features are used as targets to train the model. Since all

parameters of the model can be updated, the performance of this network can be considered to

be an approximate upper bound2 on the ability of our current architecture to extract HC features.

2Since the input FC layers (layers in blue in figure 4.2 and 4.1) are shared across features, they need to be

robust enough to capture all HC feature targets; hence the term approximate. We can obtain a true upper bound on

training an entire model to predict only one feature at a time, assuming there is no overfitting.

44

4.4 Results

In this section, we discuss the results of the probing experiments. The Pearson correlation of

the probe output and the corresponding ground truth HC feature value is computed. We use

Pearson instead of MSE/RMSE since the former is invariant to bias and scale of the features, as

a result of which we can compare performance across features. The mean Pearson across the 6

folds, along with an error bar indicating standard deviation, is plotted for each feature.

At the word-level, we split the set of feature sets into acoustic (A-P contour) and non-

acoustic (Duration, LexId, LexMisc and PEDMisc). The reason for such a split is that we intu-

itively expect wav2vec to capture the acoustic information while features based on the canoni-

cal text and uttered lexical content might be difficult to capture for the purely acoustic wav2vec

model.

For each experiment, we report results for two cases discussed in section 4.3.2:

1. Initialising the network with weights trained for comprehensibility and tuning only the

linear probes for predicting HC features (yellow contour in all the plots). This is the

standard methodology which has been used in previous works such as [19].

2. Tuning the entire network from scratch for predicting the HC features (blue contour in all

the plots).

For experiments involving the tuning of only probes (case 1 above), the probes are simple

FC stacks with one hidden layer of 128 units. They are intentionally kept shallow so as to ensure

that no further feature extraction is performed by the probes [40]. For experiments involving the

tuning of the entire network from scratch (case 2 above), the probes are FC stacks with three

hidden layers, consisting of [256, 128, 64] units. They are deep so that the model has more

freedom to extract as much information as possible in order to predict an upper bound on the

ability to extract a given feature.

45

Figure 4.3: Probe results for a compact set of 26 ASR features derived after RFECV. Refer to

section 2.1 for more details.

Figure 4.4: Probe results for 14 recording-level features derived from the acoustics and man-

ually transcribed dataset. For more details, please check section 2.1. The number of features

differs from the corresponding ASR set due to RFECV.

46

4.4.1 Recording-level probes

From figures 4.3 and 4.4, we observe that the mean band intensity of specific bands across the

entire utterance3 (band2full_mean and band3full_mean), mean of word-level statistical mode of

F0 (meanmodepitch) and recording-level s.d. of F0 semitone (stdpitchsemitone) are relatively

difficult to extract. The latter two can be explained by the simplistic mean pooling mechanism;

any temporal patterns in the low-level features are lost on average pooling the representations.

Although wav2vec has the potential to extract band intensities (high correlation in the blue plot

for band2full_mean and band3full_mean), poor performance for the same in the yellow plot

implies that the wav2vec model tuned for comprehensibility does not consider band intensities

as an important factor in predicting comprehensibility. Percent lexical miscues (percentmiscue)

is also difficult to extract from wav2vec, which is expected because it has no knowledge of

canonical text.

Rate-based features such as WCPM (wcpm), syllables per second (sylpersec) and phrase

boundary aggregates such as accuracy and precision/recall (boundaryAcc1, boundaryPR1, ...)

are relatively easy to extract. This implies that wav2vec can also capture speech rate.

Similar conclusions can be drawn for the selected FA features when it comes to band in-

tensity, speech rate and prosodic aggregate features. There is one interesting difference though:

the performance of the model on lexical miscue percentage (percentmiscue) is much higher for

the FA dataset (0.6 for FA vs 0.4 for ASR dataset). This is expected since the ground truth

feature value for FA based miscues is more accurate than the ASR value. It also highlights the

importance of using accurate ground truth targets for probes; inaccurate ground truths will lead

to inaccurate conclusions!

4.4.2 Word-level probes

On inspecting the ability of wav2vec to predict word-level acoustic features after training the

network from scratch (blue plot), we discover that mean and standard deviations of pitch, inten-

sity, HNR and various bands across a word can be extracted from wav2vec. This indicates that

3No word alignments are used; we simply average out the frame-level intensities across the entire utterance.

47

Figure 4.5: Pearson correlation of word-level acoustic HC features and outputs of the probes.

the transformer can learn word boundaries using the self-attention mechanism. On the other

hand, pitch contour functionals such as slope, correlation with gaussians of varying standard

deviations and peak/valley likelihoods are difficult to extract because our current pooling mod-

ule consists of simple mean pooling. As a result, temporal pitch information across the word is

lost. The smooth increase in correlation as we go from correlation of pitch contour with a sharp

Gaussian (gauss02) to a flatter Gaussian (gauss50) validates this hypothesis since mean pooling

is equivalent to correlation with a Gaussian of infinite standard deviation.

We observe a very steep drop in correlation for all HC features (the yellow contour) on

freezing the input FC stack and tuning only the probes. This indicates the information encoded

in wav2vec features tuned for the task of comprehensibility tell a different story; none of the

HC word-level acoustic features are being used by wav2vec for comprehensibility prediction.

The large gap between the blue and yellow contour indicates that if such HC features are indeed

helpful, incorporating them in an MTL framework should improve performance.

From the word-level non-acoustic probes trained from scratch (figure 4.6), we observe

that the functionals of silence and syllable durations can be extracted from wav2vec. It points

to the ability of the transformer to detect fine-grained syllable boundaries. Also, pauses should

be easy to predict from the acoustics.

At first glance, it may seem counter-intuitive that the model does a surprisingly decent

job at extracting POS tags (blue plot for features AU, CC, DT, ..., VB in figure 4.6). However,

48

Figure 4.6: Pearson correlation of word-level non-acoustic HC features and outputs of the

probes.

wav2vec, with just 10 minutes of labelled data, is shown to perform well for ASR. Therefore, it

can exploit some residual linguistic content in the embeddings to predict the POS tags.

The results for the set of 6 prosodic features are quite interesting (the features boundary-

info, prominfo, boundmiscue, prommiscue, is_boundary, is_prominence in figure 4.6.). Firstly,

the model is able to predict the information structure for phrase boundary while there is a drop

in the ability to predict the prominence information structure. This is expected because phras-

ing can be accurately determined from the text while prominence is much more subjective. In

fact, knowledge of POS tags can serve as a reliable indicator for phrasing and since the model

is able to extract atleast some POS tags quite well, high performance for phrasing information

structure is not surprising. The performance for prominence (is_prominence) and boundary

(is_boundary) is also quite high, indicating wav2vec’s ability to detect prosodic events.

Lastly, the model fails to predict miscue tags such as correct, inserted and substituted. This

is not surprising since it has no knowledge of the canonical text.

4.4.3 Frame-level probes

The results for frame-level probing are depicted in figure 4.7. Both plots indicate that as com-

pared to other frame-level contours, pitch, energy and Sonorant energy are difficult to extract

49

Figure 4.7: Pearson correlation between frame-level contours and probe predictions.

from wav2vec. Poor performance for pitch can be explained by the fact that computation of

pitch is not trivial and hence the ground truth itself might be noisy. On the other hand, high

correlation for intensity but low correlation for energy is counter-intuitive since intensity is

simply the logarithmic energy, normalised by silence energy. Similarly, unlike sonorant inten-

sity, sonorant energy is also difficult to extract. A possible explanation is that the transformer

uses self-attention to normalise the utterance with respect to silences.

Except the expected drop in performance, there is no noticeable change in the trend as we

move from the blue contour (which represents information which can be potentially extracted

from wav2vec on training it from scratch) to the yellow contour (wav2vec tuned for the task of

comprehensibility).

4.5 Concluding remarks

Correlation does not imply causation is an important maxim, which is all the more applicable

for black-box deep learning models. Current architectures (including the ones proposed in this

work) do not explicitly incorporate causality. As a result, correlation with a particular hand-

crafted feature does not imply that it was responsible for the final prediction. Hence, through

the probing procedure explained above, it is erroneous to claim that a particular HC feature

is responsible for the prediction, just because we can extract it from tuned wav2vec. Such

50

simplistic probing can only throw light on the nature of information which can be potentially

extracted from wav2vec. If a particular HC feature, which has been proven to be crucial for

comprehensbility prediction in literature, cannot be extracted after extensive probing, we can

think of ways to incorporate it from an external source. This is the key usage of the probing

technique discussed above.

51

This page was intentionally left blank.

Chapter 5

HC feature concatenation

Although one of the key goals of this work is to do away with the extensive hand-engineering

involved in extracting features, it is interesting to analyse if they can supply information which

is complementary to wav2vec. To do so, we propose two architectures in this chapter.

5.1 Architectures

The first architecture, termed W2VCat (Wav2vec + concatenation), involves the concatenation

of hand-crafted features at various hirearchies. The second one, termed RNN Fusion, combines

information from wav2vec and a RNN operating on word-level features.

5.1.1 W2VCat

In this subsection, we augment the W2Vanilla model (figure 3.2) with hand-crafted features.

By concatenating various HC feature sets derived in the previous work [1] at various hierar-

53

chies, we can check for complementary information between wav2vec embeddings and the HC

features. The architecture is given in diagram 5.1. HC features at each hierarchy are passed

through a separate stack of FC layers before concatenation to extract meaningful task-specific

representations.

5.1.2 RNN Fusion

Instead of concatenating word-level HC features with the wav2vec word-level representations,

we experiment with a parallel RNN branch which operates on the HC features. We use the same

RNN which was discussed in section 2.2.2. We fuse information from the two modalities at

two different hierarchies: decision-level and embedding-level.

In decision-level fusion, each branch (wav2vec branch and the RNN branch) predicts a

comprehensibility score. The two scores are subsequently averaged to get the final prediction,

as depicted in figure 5.2. This is similar to the approach proposed in [22], except we do not learn

a weighted combination of the scores of the two branches and stick to simple averaging1. In

embedding-level fusion (figure 5.3), we concatenate the final representation from both modali-

ties and then pass this vector through a stack of FC layers to predict the final comprehensibility

rating. This increased flexibility the model to capture relationships between acoustic and lexical

modaliities before predicting a score.

Ideally, training the two branches from scratch should maximise performance as each

branch can extract complementary information from the input. However, in practice, initialising

the weights of the model with a pre-trained network can not only speed up training but also

improve performance. Hence, we report performance of the fusion architectures by training

each branch separately for the task of comprehensibility prediction and then subsequently fine-

tuning both the branches together.

1Instead of learning fixed weights for each branch, it would be interesting to explore an attention-based weight-

ing mechanism which generates different weights for each branch depending on the input.

54

Figure 5.1: W2VCat includes the ability to concatenate HC features at various hierarchies. FC

stack 1 has the same hyperparameter settings as W2Vanilla and W2VAligned.

55

Figure 5.2: In decision-level fusion, the scores from the two branches are averaged to get the

final prediction. Both branches are simultaneously trained end-to-end so that each branch can

extract complementary information.

56

Figure 5.3: In embedding-level fusion, the information from the two branches is fused at a

lower-level than decision fusion. The representations from the two branches are concatenated

to obtain an embedding, which is subsequently passed through a FC stack to obtain a compre-

hensibility score. Model is trained end-to-end.

57

Model Recording-level features LR Val CCC Test CCC Test

Pearson

W2Vanilla - 0.001 0.813 0.814 0.823

1a Accuracy 0.0003 0.821 0.813 0.827

1b 0.0007 0.818 0.81 0.824

2a A-P contour 0.0003 0.809 0.798 0.806

2b 0.0007 0.802 0.777 0.792

3a Prosodic miscue 0.0003 0.811 0.799 0.818

3b 0.0007 0.805 0.79 0.81

4a Rate 0.0003 0.808 0.783 0.814

4b 0.0007 0.811 0.807 0.823

5a Accuracy+Prosodic miscue 0.0003 0.824 0.825 0.832

5b +Rate 0.0007 0.798 0.803 0.813

6a Accuracy+A-P contour+ 0.0003 0.819 0.807 0.821

6b Prosodic miscue+Rate 0.0007 0.812 0.806 0.814

Table 5.1: Performance on concatenating various recording-level features in the W2VCat ar-

chitecture. These results were obtained on extensive tuning of the learning rate and the FC

stacks. The optimal configuration for FC stack 4 (through which recording-level HC features

are passed) was 6 layers of 32 hidden units each.

5.2 W2VCat results

We report the performance of the W2VCat architecture, in which various HC feature sets are

concatenated at the word-level and recording-level. Unless mentioned otherwise, we report

performance on using the manually transcribed dataset to obtain the maximum possible im-

provement in performance.

58

5.2.1 Recording-level HC features

From table 5.1, we can observe that including accuracy, prosodic and rate features in the par-

allel branch (Model 5a) gives an improvement of 0.01 in test CCC over the W2Vanilla model.

This aligns with our intuition since unlike acoustic features, the rest cannot be extracted from

wav2vec and hence bring in complementary knowledge of canonical text and manually tran-

scribed text. Also, the learning rate is critical; a slight increase significantly degrades perfor-

mance (Model 5b). Other feature sets do not bring in any noticeable performance increment

over W2Vanilla.

5.2.2 Word-level HC features

On bringing in any feature set, we see an improvement in performance over W2VAligned (row

2). However, there is no noticeable improvement over the best W2Vanilla model (row 1). This

discouraging result motivated us to devise a different architecture (RNN Fusion) to exploit

word-level features.

5.3 RNN Fusion results

Results for the RNN fusion are given in table 5.3. On separately training the wav2vec branch

with waveforms (since W2Vanilla only requires waveforms) and the RNN branch using only

non-acoustic features, followed by joint tuning of both branches, embedding-level fusion gives a

slight improvement in performance over the plain W2Vanilla model. On the other hand, training

the entire model from scratch gives no improvement. This indicates that a good initialisation

can not only speed up training but also lead to better performance.

59

Model Word-level FC features LR Val CCC Test CCC Test Pearson

W2Vanilla - 0.001 0.813 0.814 0.823

W2VAligned - 0.001 0.808 0.778 0.814

1a Acoustic 0.00015 0.805 0.8 0.815

1b 5E-05 0.805 0.804 0.817

2a Duration 0.00015 0.807 0.802 0.815

2b 5E-05 0.805 0.803 0.817

3a LexId 0.00015 0.807 0.808 0.816

3b 5E-05 0.805 0.803 0.817

4a LexMisc 0.00015 0.807 0.808 0.815

4b 5E-05 0.805 0.809 0.817

5a PEDMisc 0.00015 0.806 0.803 0.813

5b 5E-05 0.805 0.803 0.816

6a Duration+LexId 0.00015 0.806 0.805 0.817

6b +LexMisc+PEDMisc 5E-05 0.805 0.806 0.817

7a Acoustic+Duration+LexId 0.00015 0.808 0.802 0.815

7b +LexMisc+PEDMisc 5E-05 0.804 0.806 0.816

Table 5.2: Performance on concatenating various word-level features in the W2VCat architec-

ture. After tuning the hyperparameters, we find that passing the word-level features through a

4-layer stack with [96, 64, 48, 32] hidden units gives the best performance.

60

Features Fusion Pre-trained LR Val CCC Test CCC
Test

Pearson

HC Acoustic - - 0.0001 0.648 0.653 0.676

HC Non-acoustic - - 0.0001 0.763 0.766 0.775

HC Acoustic

+ Non-acoustic
- - 0.0001 0.762 0.767 0.777

W2Vanilla - - 0.001 0.813 0.814 0.823

W2Vanilla + Embed. TRUE 0.0003 0.811 0.805 0.815

HC Acoustic FALSE 0.0003 0.799 0.767 0.805

Decision TRUE 5E-05 0.792 0.795 0.805

FALSE 5E-05 0.785 0.789 0.803

W2Vanilla + Embed. TRUE 0.0003 0.819 0.821 0.828

HC Non-acoustic FALSE 0.0003 0.818 0.817 0.825

Decision TRUE 5E-05 0.817 0.800 0.824

FALSE 5E-05 0.809 0.798 0.819

W2Vanilla + Embed. TRUE 0.0001 0.818 0.82 0.827

HC Acoustic + FALSE 0.0001 0.815 0.813 0.824

HC Non-acoustic Decision TRUE 0.0001 0.811 0.801 0.81

FALSE 0.0001 0.811 0.79 0.801

Table 5.3: Results of the RNN Fusion model discussed in section 5.3. Embed. and Decision

refers to the two fusion techniques discussed in section 5.3. Pre-trained refers to whether the two

branches are initialised with weights trained for comprehensibility; if it is False, both branches

are trained from scratch.

61

This page was intentionally left blank.

Chapter 6

Multi-task Learning

Although HC features are computationally expensive, concatenating them with wav2vec-

extracted embeddings demonstrated an improvement in performance (section 5.2). This indi-

cates that complementary information exists between wav2vec and HC features. In order to

utilise these features, we propose a new architecture inspired by the paradigm of multi-task

learning (MTL). We ask the model to predict the HC features at each hierarchy. By doing so,

we nudge the model to learn intermediate representations which capture such features which,

in literature, are known to be helpful for the task of comprehensibility prediction. For example,

knowledge of gender, age and F0 has been shown to be helpful for speech emotion recognition

and hence was incorporated into an MTL framework in [38]. In [41], the authors train a self-

supervised model on a variety of speech tasks such as phone recognition, KWS, ASR, speaker

identification, speaker verification, emotion recognition, etc. Their findings indicate that all

tasks (except speaker verification) benefit from the presence of all other auxiliary heads.

The benefit of a multi-task learning framework is two-fold. Firstly, during inference, such

features are automatically predicted by the model and hence manual feature extraction is elimi-

nated. Secondly, we can use (some) of these predictions to deliver feedback by comparing them

with HC features of proficient speakers. For example, let PVpredicted denote the the pitch vari-

63

ation across the utterance (one of the recording-level HC feature). If PVpredicted < µPV �2sPV

where µPV and sPV are the mean and standard deviation of pitch variation of proficient speakers,

we can conclude that the child needs to be more expressive by varying the pitch.

6.1 Architecture

The architecture for MTL is given in figure 6.1. At each hierarchy, we use a stack of FC layers

to predict the HC features from the wav2vec representations. These tasks are also known as

auxiliary tasks. By training the model end-to-end, it is expected that the model will learn robust

intermediate representations. Feature sets discussed in table 2.1 are used as targets for the

auxiliary branch.

In section 5.3, we observed that on separately training the two branches of the RNN fu-

sion architecture for comprehensibility prediction and initialising the fusion model with these

weights, a slight improvement in performance is observed. On the other hand, training the

model from scratch does not yield any performance benefit. A good initialisation clearly helps.

Hence, we first train the MTL network for comprehensibility prediction by removing all the

auxiliary tasks. Then, we initialise the model with these pre-trained weights and subsequently

train the MTL model end-to-end.

6.2 Loss

Along with the comprehensibility loss, we introduce additional weighted MSE losses for each

hierarchy. The final loss function is:

Loss = Lcompre +arecLrec +awordLword +a f rameL f rame (6.1)

where Lcompre refers to the comprehensibility loss (discussed in section 2.3.1), arec,aword

64

Figure 6.1: The proposed MTL framework consists of fully-connected stacks at each hierarchy

to extract hand-crafted features. On training the entire model end-to-end for both comprehensi-

bility prediction and HC feature prediction, we expect the model to learn robust representations

in FC stack 1 and FC stack 2. Ideally, we can experiment with more powerful deep learning

models such as RNNs and CNNs (instead of FC stacks) for auxiliary tasks but we stick to FC

stacks for simplicity.

65

and a f rame control the relative importance of each hierarchy and Lrec,Lword and L f rame are

the MSE losses for each hierarchy. They have been covered in equations 4.1, 4.2 and 4.3

respectively. Note that the weights can be set to 0 to drop a particular auxiliary task.

6.3 Results

The results of the MTL experiments on bringing in recording-level and word-level features

(separately) are discussed in this section.

6.3.1 Recording-level auxiliary tasks

In sub-section 5.1.1, we found an improvement in performance on concatenating recording-

level non-acoustic features (lexical miscue, prosodic miscue and rate). As a result, our first

attempt at MTL incorporates an auxiliary branch for predicting these features. The weights

aword and a f rame are set to 0 for this experiment. Results are given in table 6.1. Despite

varying the learning rate, number of layers and hidden units in the FC stack and arec, there is

no improvement in performance. In fact, we see a slight decline as compared to the W2Vanilla

model without any MTL auxiliary branches (row 1).

Although the FC stack hyperparameters (number of layers and hidden units) have some-

what converged to a one layer stack with around 220 units, the learning rate and arec cover a

large range. Further tuning might help. Also, mean pooling, which is used to aggregate frame-

level features to get a recording-level representation, could be replaced with parametric models

such as GRUs or Transformers for better modelling. Lastly, we observe that the validation CCC

of the MTL models is similar to W2Vanilla while the test CCC is lower than W2Vanilla. This

hints towards overfitting in case of MTL.

Next, we predict recording-level acoustic features in the MTL auxiliary branch. Results

are presented in table 6.2. Unfortunately, no improvement in performance is observed. Al-

though validation performance is similar to the W2Vanilla model, a lower performance on test

set again hints towards overfitting.

66

FC stack arec LR Val CCC Test CCC Test Pearson

W2Vanilla 0 0.001 0.813 0.814 0.823

(209) 3.31 0.00039 0.814 0.806 0.82

(224) 2.43 0.00057 0.813 0.798 0.82

(222) 3.81 0.00088 0.813 0.788 0.821

(128) 0.65 0.00026 0.813 0.81 0.82

(248, 248) 1.43 0.00042 0.812 0.804 0.82

Table 6.1: Performance of MTL model which predicts recording-level non-acoustic HC features

in an auxiliary branch. FC stack refers to the stack of fully-connected layers which is used to

predict the HC features from the utterance-level wav2vec embedding.

FC stack arec LR Val CCC Test CCC Test Pearson

W2Vanilla 0 0.001 0.813 0.814 0.823

(79, 79) 1.31 0.00019 0.816 0.804 0.819

(201, 201) 2.30 0.00014 0.816 0.807 0.819

(103, 103) 0.92 0.00018 0.815 0.808 0.821

241 3.33 0.00046 0.815 0.809 0.82

(144, 144) 0.59 0.00014 0.814 0.806 0.819

Table 6.2: Performance of MTL model which predicts recording-level acoustic HC features in

an auxiliary branch.

67

Pre-word stack aword LR Val CCC Test CCC
Test

Pearson

W2Vanilla 0 0.001 0.813 0.814 0.823

W2VAligned 0 0.001 0.808 0.778 0.814

32 0.87 0.00036 0.81 0.796 0.811

32 0.84 0.00036 0.81 0.794 0.813

32 0.76 0.00047 0.81 0.791 0.815

(16, 16, 16) 1.40 0.00017 0.809 0.808 0.815

(32, 16) 0.21 0.00016 0.809 0.805 0.814

Table 6.3: Results for MTL with word-level acoustic HC features as targets in an auxiliary

branch. Word-level features are passed through a stack of fully-connected layers before con-

catenation with acoustic representation; the hidden units of each layer in this stack is mentioned

in column Pre-word stack.

6.3.2 Word-level auxiliary tasks

In this subsection, we report results on setting arec = a f rame = 0 and varying aword . We ex-

periment with 2 feature sets as MTL targets: acoustic and non-acoustic (which includes lexical,

miscue, duration and PEDMiscue).

From table 6.3, we can infer that no improvement in performance is observed. Again,

mean pooling to obtain a word-level representation from frame-level representations could be

the culprit. For example, pitch variation across a word is an important feature which is difficult

to capture using mean pooling.

In table 6.4, performance of models trained to additionally predict word-level non-acoustic

features is discussed. Again, no improvement in performance on using non-acoustic features as

MTL targets. However, hyperparameters such as learning rate and aword are yet to converge,

indicating that further tuning might help.

68

Pre-word stack aword LR Val CCC Test CCC
Test

Pearson

W2Vanilla 0 0.001 0.813 0.814 0.823

W2VAligned 0 0.001 0.808 0.778 0.814

32 0.87 0.00028 0.808 0.798 0.812

32 0.11 0.00068 0.808 0.78 0.815

32 0.55 0.00071 0.807 0.794 0.814

(32, 32) 0.91 0.00060 0.807 0.792 0.813

(32, 32) 0.60 0.00099 0.805 0.794 0.812

Table 6.4: Results for MTL with word-level non-acoustic HC features as targets in an auxiliary

branch.

6.3.3 Concluding remarks

Since we did not observe any improvement in performance for any of the feature sets, we also

tried training the entire model from scratch (instead of initialising it with weights pre-trained

for comprehensibility). However, it did not yield any improvement.

A possible direction to explore would be to include both recording and frame-level branches

(aword 6= 0,arec 6= 0). In particular, the recording-level branch could benefit greatly from this

since a number of recording-level features are aggregates of word-level features. However,

training the network becomes tricky since we not only have two heads to tune but the relative

importance of the two (and with respect to comprehensibility) also needs to be tuned (arec and

aword). Also, for simplicity purposes, we are currently using MSE as the loss function for all

features. However, binary features such as prosodic events, POS tags, etc. could benefit from

losses which are designed for classification such as binary cross entropy loss.

Although the proposed architecture can incorporate frame-level MTL, we first experi-

mented with word-level and recording-level MTL heads since we believe frame-level predic-

tions will be too noisy and fine-grained for the model to extract anything meaningful. Moreover,

the probing experiments suggest that the model does a decent job at capturing most frame-level

contours as compared to the other two hierarchies (check subsection 4.4.3).

69

This page was intentionally left blank.

Chapter 7

Summary

In summary, we have successfully replaced a RFC model operating on HC features with a

deep learning alternative. Our baseline deep learning networks, operating on HC features, was

already found to outperform the RFC. We then introduced our first wav2vec-based architecture

which only requires waveform as input. It outperformed the deep learning baselines, which op-

erate on features derived after extensive hand-engineering. Moreover, the end-to-end nature of

the deep learning model makes it easy to train, as opposed to multiple independent components

of the feature extraction framework.

We then focus on inspecting the wav2vec representations. We do so by adding linear

probes at each hierarchy and asking the model to predict HC features, which are interpretable.

At the frame-level, we discover that it is possible to extract most contours with high correla-

tion. Pitch contour shapes at the word-level are difficult to extract, which is expected since our

pooling technique for computing word-level representations from frame-level representations

is trivial mean pooling. Word-level lexical features such as POS tags and miscue tags are diffi-

cult to extract since the model has no knowledge of the canonical text. At the recording-level,

rate-based features and prosodic aggregates can be extracted from the tuned wav2vec model.

Next, we tested for complementary information between HC features and wav2vec by

71

incorporating the HC features in the wav2vec architecture. We observed an improvement when

non-acoustic recording-level features were concatenated with the wav2vec representation. This

is in line with our expectations since wav2vec has no knowledge of canonical text and the ASR

decoded text. On the other hand, word-level features did not improve performance. We also

tried out a different fusion technique for fusing the word-level lexical information and wav2vec

acoustic information. On initialising both branches of the architecture with weights trained for

the task of comprehensibility, we observed a slight improvement in performance.

Finally, we discussed a multi-task learning framework which incorporates auxiliary branches

for predicting HC features at various hierarchies. Although we did not observe any improve-

ment in performance, we believe it is a scalable architecture which might benefit from better

hyperparameter tuning, pooling strategies and more data.

7.1 Final results

A summary of the performances of all models is given in table 7.1. On simply replacing RFC

with a MLP, we see an improvement in the range 0.015-0.02 for Test Pearson. W2Vanilla,

without any knowledge of canonical and ASR decoded text, demonstrated an improvement of

0.025 in Test CCC over the recording-level MLP trained on both lexical and acoustic feature

sets. Next, we experimented with various ways of bringing in HC features in the W2Vanilla

architecture. Our best system (W2VCat) improves over the RFC baseline by 0.065 (Test Pear-

son). However, the improvement over W2Vanilla is only 0.01. Furthermore, MTL did not lead

to any performance improvement. Thus, W2VCat is our best performing system.

7.2 Future Work

We plan to pursue the following directions in the future:

• For all wav2vec architectures, the transformer is frozen due to lack of computational

resources. It would be interesting to check if fine-tuning them further leads to any im-

provement, especially in a low resource setting (since we have only 10 hours of speech).

72

Model HC Features Dataset
Val

CCC

Test

CCC

Test

Pearson

RFC Recording (All) ASR - 0.717 0.760

FA - - 0.777

MLP ASR 0.769 0.767 0.777

FA 0.793 0.789 0.796

RNN Word (All) ASR 0.738 0.741 0.751

FA 0.762 0.767 0.777

W2Vanilla - - 0.813 0.814 0.823

W2VAligned - ASR 0.804 0.781 0.815

- FA 0.808 0.778 0.814

W2VCat Recording (All except ASR 0.814 0.797 0.822

A-P contour) FA 0.824 0.825 0.832

RNN Fusion Word (All except ASR 0.813 0.815 0.823

(Embedding) A-P contour) FA 0.818 0.82 0.827

MTL
Recording

(A-P contour)
FA 0.816 0.804 0.819

Recording (All except

A-P contour)
FA 0.814 0.806 0.82

Word

(A-P contour)
FA 0.81 0.796 0.811

Word (All except

A-P contour)
FA 0.808 0.798 0.812

Table 7.1: Summary of performances of all the proposed architectures, along with the baseline.

73

• To alleviate the issue of a limited dataset, data augmentation techniques such as SpecAug-

ment [42] can be explored. It is important to note that techniques which change the speech

rate are applicable for tasks such as ASR but not for comprehensibility since speech rate

affects the prediction. In [43], new samples are generated by simply extracting a random

slice of an utterance; since it is an utterance-level task, the label is preserved.

• Domain shift: While Wav2vec2.0 is pre-trained on LibriSpeech which consists of au-

diobook recordings, our dataset consists of children’s recordings. Studies such as [44]

have studied the effect of domain shift between pre-training, fine-tuning and test dataset.

Unsurprisingly, their key finding is that adding test-domain data to the pre-training phase

helps. Hence, it would be interesting to explore if pre-training wav2vec on a large corpus

of children’s dataset (potentially a collection of various small corpora) improves perfor-

mance.

• Transfer learning: Emotion recognition is a closely related task since prosody is a crucial

acoustic factor for predicting the utterance-level score. To alleviate the issue of a limited

dataset, we can improve the low-level feature extractors (such as the CNN of wav2vec)

by training it for emotion recognition and initialising our comprehensibility model with

these learned weights.

• Dataset size: Since obtaining comprehensibility ratings is an expensive endeavour (both

time and skill-wise), it would be interesting to analyse the performance of our wav2vec-

based model on varying the size of the dataset. Since most other approaches train an

entire network from scratch, their performance might drop significantly in a low-resource

setting as compared to a wav2vec-based model (or any pre-trained model).

• Beyond wav2vec: After Wav2vec2.0, many closely related self-supervised models have

been proposed. For example, XLS-R [45] is trained on about 500,000 hours of pub-

licly available speech audio in 128 languages. Since our dataset consists of L2 English

speakers, we might benefit from a cross-lingual model. Data2vec [46] proposes a general

framework for speech, vision and language and has demonstrated superior performance

over Wav2vec2.0 on low-resource ASR. It would be interesting to explore the perfor-

mance of these models on our task.

• Wav2vec has demonstrated excellent performance for ASR in literature [6, 47]. Since

74

our task also involves an ASR component, it would be beneficial to incorporate a sep-

arate branch for ASR. This not only has the potential to improve ASR performance but

also reduce the overall computation time during deployment since the wav2vec extracted

features could be used for both ASR and Comprehensibility.

• A self-supervised framework is discussed next.

Wav2vec2.0 is trained using contrastive loss for predicting masked representations. It is

problem agnostic by design. However, from literature, we know of several acoustic properties

of speech which are crucial for comprehensibility prediction and can be derived from the signal

without any human labelling. Hence, we propose a self-supervised model which is trained to

predict such properties, thereby biasing the model towards such known features. Although ob-

taining comprehensibility ratings is time consuming since it requires skilled teachers, collecting

speech recordings is much easier. Currently, apart from 10 hours of data labelled for compre-

hensibility, we have an additional 20 hours of unlabelled children’s speech data. We propose an

architecture which can be exploit this unlabelled data in a self-supervised fashion. It is inspired

by PASE [48, 49] which is briefly discussed below.

PASE consists of a convolutional encoder which accepts waveform as input and outputs

frame-level representations. These representations are fed to various workers. The worker

targets can be extracted from the waveform itself (hence the term self-supervised). Examples of

worker tasks include MFCC prediction, waveform sample recovery and Log Power Spectrum

prediction.

The shared encoder is forced to extract meaningful representations in order to solve all

the worker tasks which, from domain knowledge, are known to be important characteristics of

speech for a number of downstream tasks. PASE was pre-trained on about 10 hours of speech,

consisting of 15 second recordings from 2848 speakers. For speech emotion recognition, when

the encoder was further fine-tuned along with the classifier layer, they observed an improve-

ment of 6% in classification accuracy over standard features such as MFCCs and Filterbanks.

As expected, ablation studies demonstrated a drop in performance on discarding the Prosody

worker (which consists of predicting four frame-level features - the interpolated logarithm of

the fundamental frequency, voiced/unvoiced probability, zero-crossing rate, and energy). Also,

simply training the PASE architecture in a supervised fashion for the downstream task led to a

75

Figure 7.1: Proposed architecture which can be trained in a self-supervised fashion without

comprehensibility labels.

76

4% decline in performance. It indicates the effectiveness of pre-training on a number of worker

tasks before fine-tuning for the task at hand.

Motivated by PASE, we propose an architecture in figure 7.1, which is a slightly modified

version of the MTL architecture (figure 6.1). At each hierarchy, we ask the model to predict

HC features which are known to be useful for comprehensibility prediction. We can use any

standard deep learning model as the encoder (Wav2vec2.0, PASE, etc.). Furthermore, we can

initialise it with pre-trained weights (e.g. Wav2vec2.0 pre-trained on Librispeech) so as to speed

up training. Since PASE was trained on just 10 hours of data while we currently have around

30 hours of unlabelled children’s speech, dataset size will not be a major bottleneck.

Another motivation for the self-supervised framework is the issue of domain mismatch.

The Wav2vec2.0 model, which is being currently used for extracting frame-level embeddings,

was pre-trained on LibriSpeech [50], a dataset consisting of audiobook recordings (by presum-

ably adult speakers since it’s recordings are sourced from LibriVox, an open-source project).

Thus, there is a major domain mismatch between the pre-training dataset and our test dataset

which consists of L2 children speakers. Naturally, such a mismatch degrades performance [44].

For example, due to differences in the pitch range of adults and children, the CNN encoder

pre-trained on adult speech may perform poorly when it comes to pitch extraction on children’s

speech. Hence, it would be beneficial to train our own self-supervised model on children’s

speech from scratch.

77

This page was intentionally left blank.

Appendix A

Wav2vec2.0 for PED

In stage 1 of our work, we proposed a CRNN framework for predicting prosodic events

(prominence and phrase boundary). It consisted of a convolutional neural network for extracting

features from waveform segments and a Bidirectional GRU for modelling context across words.

Using multi-task learning and Sinc-based convolutions, we managed to outperform a BGRU

trained on hand-crafted features [3]. A summary of the results is given in table A.1.

The best result without any hand-crafted features (row 3 in table A.1) used Sinc filters and

benefited from conditioning of the prominence prediction on the phrase boundary prediction.

A.1 Wav2vec2.0-based architecture

Instead of extracting features from raw waveform, we replace them with frame-level wav2vec

embeddings. We can then use standard deep learning blocks such as CNNs or RNNs to pool the

word-level embedding chunks and pass it through a sequence encoder to obtain prosodic event

predictions. A similar approach was proposed in [51]: CNNs are used to extract information

from 32 low-level descriptors (such as F0, voicing probability, MFCCs, etc.) and predict a

79

Figure A.1: Proposed wav2vec-based architecture for prosodic event detection.

80

Task Model HC features MTL
Test

Pearson

Prominence GRU A34 N 0.725

SincConv+GRU - N 0.721

SincConv+GRU - Y 0.74

SincConv+GRU A34+A27 Y 0.757

SincConv+GRU A34+A27+GloVe Y 0.8

Boundary SincConv+GRU - N 0.887

SincConv+GRU - Y 0.894

SincConv+GRU A27+GloVe Y 0.927

Table A.1: Summary of PED results reported in our previous work [3]. The performance of the

best system without hand-crafted features is highlighted in bold.

Figure A.2: The two conditioning architectures for MTL. In (a), the wav2vec backbone is shared

across the two tasks. In (b), we have separate wav2vec backbone so that the model can extract

different task-specific features.

81

Task Pooling Stack 1 MTL
Test

Pearson

Prominence Mean [512, 256] N 0.745

Mean [512, 256] Y (shared backbone) 0.737

Mean [512, 256] Y (separate backbones) 0.744

CNN [512, 256] N 0.387

CNN - N 0.759

Boundary Mean [512, 256] N 0.901

CNN [512, 256] N 0.906

CNN - N 0.906

Table A.2: Performance of the proposed wav2vec-based architecture for PED. MTL refers to

the two conditioning architectures shown in figure A.2.

word-level label. Our proposed architecture can be found in figure A.1. We also experiment

with the MTL architecture shown in figure A.2. We try out both configurations: using a shared

wav2vec backbone or using separate wav2vec backbone for prominence and phrase boundary.

In both cases, we condition the prominence prediction on the phrase boundary prediction.

A.2 Results

We use the same sequence encoder as we did in our previous work: a 2-layer, 256-dimensional

bidirectional GRU. We experiment with 2 pooling modules: mean pooling and CNN filtering

followed by max pooling. In mean pooling, we simply average the frame-level representations

to obtain a word-level representation Wk. For CNN, we use two kernel widths: 25 and 51, which

give a receptive field of around 500 ms and 1 second respectively. For each kernel, we have a

2-layer CNN with 128, followed by 64 filters. For each kernel, the output of the CNN is max-

pooled across time to obtain a single word-level embedding. The output embeddings of both

the kernel networks are concatenated to obtain the final word-level representation Wk.

We use the same folds and training methodology as we did in stage 1. Performance is

reported in table A.2.

82

Results indicate that the wav2vec-based model which uses mean pooling and without any

FC layers (row 5 in table A.2) gives a noticeable improvement (0.02 absolute Pearson corr.) for

prominence over the Sinc-based MTL architecture without any hand-crafted features (row 3 in

table A.1). For phrasing, we see an improvement of 0.01 in Test Pearson. Note that we did not

tune the hyperparameters (learning rate, batch size, CNN kernel widths, number of filters, etc.)

of the wav2vec architecture. Hence, it is reasonable to expect some further improvement on

tuning these critical hyperparameters.

This result is important from the perspective of deployment: wav2vec features will be ex-

tracted for comprehensibility prediction. In that case, we can do away with the Sinc-based CNN

model and simplify the pipeline by using the same wav2vec features for both comprehensibility

and PED. This will reduce compute time. Moreover, we could explore joint optimisation of the

PED and Comprehensibility networks since both networks could benefit from each other.

83

This page was intentionally left blank.

Appendix B

Word-level pooling

In W2Aligned, we used mean pooling to obtain a word-level representation from frame-

level representations and word alignments. Ideally, deep learning models such as CNN, RNNs,

etc. can learn intricate patterns and perform much better than trivial mean pooling. However,

we run into an implementation issue for more sophisticated pooling techniques as discussed

below.

GPUs are extremely fast at computing matrix multiplications. All deep learning compo-

nents can be broken down into a series of matrix multiplications. As a result, the deep learning

revolution has been significantly driven by increases in GPU performance. Also, unlike images,

each sample in speech datasets tend to be of different lengths. As a result, they need to be

padded in order to construct a tensor which can be subsequently fed to a GPU.

With this background, let us now come to the crucial difference between mean pooling

and other deep learning architectures.

In the example depicted in figure B.1, we have N=3 words in the utterance consisting of

F1, F2 and F3 frames (Total number of frames = F1 + F2 + F3 = F). The wav2vec feature matrix

is of dimensions (D, F) where D is the embedding dimension.

85

Figure B.1: Implementation of mean pooling to aggregate frame-level features and obtain word-

level representation. The example consists of 3 words with F1, F2 and F3 number of frames.

Mean pooling can be implemented with a giant matrix multiplication. To do so, we con-

struct a mask of dimensions (F, N) as depicted in the figure. The first column has value 1/F1 in

the first F1 rows and 0 otherwise. The second column has 1/F2 in rows [F1, F1+1, ..., F1+F2]

and 0 elsewhere. Similarly for the third column. We can obtain the mean pooled representation

by multiplying the feature matrix with the mask, as depicted in figure B.1.

On the other hand, for any other pooling mechanism, we need to first split the utterance

using the word alignments into chunks of frame-level features. Then, they need to be padded in

order to construct a batch. We can now pass this batch to a standard deep learning block such as

RNN or CNN to obtain a pooled representation. Please see figure B.2 for a visual explanation

of the same.

The training procedure is significantly slowed down by this procedure, despite using vec-

torised PyTorch operations such as torch.split() instead of loops1 for splitting the utterance into

word-level chunks. Moreover, say an utterance consists of N words with frame lengths F1,

1Loops can cause a major bottleneck if not implemented efficiently on a GPU.

86

Figure B.2: Implementation of a generic pooling to aggregate frame-level features and obtain

word-level representation.

87

F2 ,..., FN. As depicted in figure B.2, we need to pad the chunks to max(F1, F2, ..., FN). If

a particular utterance consists of even one long word, each chunk will need to be padded to

construct a batch. The unavoidable padding will lead to a significant increase in the number of

computations in the pooling module.

While W2VAligned with mean pooling takes around 1 hour to train, replacing the word-

level pooling module with a CNN or a RNN takes around 10 hours. On running a couple

of experiments with standard CNN and RNN hyperparameters, no performance increase was

observed. It is difficult to conclude the effectiveness of such pooling without extensive tuning

of the hyperparameters. However, due to time constraints, we did not pursue it further.

88

Appendix C

Timing Analysis

In this appendix, we analyse the time taken by W2Vanilla to generate prediction(s). This

is important from the perspective of deployment. Techniques such as pruning of weights and

quantisation of weights can be explored in case the model fails to meet the timing criterion.

The current pipeline can be broken down into 2 main steps:

1. Wav2vec feature extraction: in this stage, we read the .wav file, load the Wav2vec2.0

model into memory and compute a forward pass through the CNN and transformer stack

of wav2vec to generate the frame-level representations (red bars in all subsequent plots).

2. Score prediction and ensembling: The wav2vec features are fed to W2Vanilla model,

which consists of FC stacks and pooling mechanisms. For each utterance, we compute 30

scores from the 30 trained models1 and average it out to obtian the final prediction (blue

bars in all subsequent plots).

We experiment with both wav2vec2-base and wav2vec2-large since the two differ in the

sizes of the transformer and the embedding dimensionality which significantly affect the time

1for each of the 6 test sets, we have 5 models trained in a CV manner.

89

Figure C.1: Time taken by base and large models on varying duration of the recordings. On

X-axis, we have an increasing number of recordings. Y-axis reports either the total time taken

(left half) or time taken per second of audi input (right half). Results on using the base/large

models are reported in the first/second row respectively.

taken to compute features. Also, performance is reported for both CPU and GPU, whose speci-

fications are given below:

• GPU specifications: NVIDIA GeForce GTX 1080 Graphics Cards with 8 GB GDDR5X

memory and 2560 CUDA cores.

• CPU specifications: Processor - Intel(R) Core(TM) i9-9940X CPU @ 3.30GHz. 14 CPU

cores, 28 siblings (hyperthreading.; CPU-only experiments used 10 cores (specified using

taskset -c 0-10). Total RAM: 128 GB

The results are given in figure C.1. First, let us discuss the base model and stick to CPU

performance. Total time taken (left plot in row 1) seems to scale approximately linearly with the

90

total duration of the recordings (clear with the CPU numbers). This is expected since number

of frame-level embeddings which need to be extracted from wav2vec linearly increases with

the duration of the utterance. The plot on the right, which depicts the time taken per second of

input recording, seems to decrease upto a certain point and then saturate. This can be potentially

explained by two important calls in the wav2vec feature extraction stage: loading the wav2vec

model into memory and computing the forward pass. The former is independent of the duration

of the recording while the latter will scale linearly with duration as discussed previously. In this

case, time taken for wav2vec feature extraction can be modelled as Ax + B where A depends on

the configuration of the wav2vec model, x is the duration of the input and B is the time taken

to load the model into memory for inference. This hypothesis can be further tested by reporting

the time taken by the two stages separately.

On moving from base to large, we observe an approximate doubling of the total time taken.

This can be explained by the doubling of the number of transformer encoders as we move from

base (12 layers) to large (24 layers), which are responsible for the bulk of the computation

involved in generating the embeddings.

In all the plots, we can observe that generating the final score by passing the wav2vec

features through the FC stacks and pooling, followed by 30-fold ensembling, forms a minuscule

fraction of the total time. This allows us to use more sophisticated models in the architecture

which follows wav2vec features.

For all settings, the GPU consistently outperforms the CPU by a large margin as expected.

The speedup is significant. For example, for wav2vec2-large, it provides an approximate 6x

speedup over the CPU.

91

This page was intentionally left blank.

References
[1] Kamini Sabu. Automatic Assessment of Fluency in Children’s Oral Reading using Prosody

Modeling. PhD thesis, Indian Institute of Technology Bombay, Mumbai, India, Submitted

on 28th February 2022.

[2] Leonardo Pepino, Pablo Riera, and Luciana Ferrer. Emotion recognition from speech

using wav2vec 2.0 embeddings. arXiv preprint arXiv:2104.03502, 2021.

[3] Mithilesh Vaidya, Kamini Sabu, and Preeti Rao. Deep learning for prominence detection

in children’s read speech. In ICASSP 2022 - 2022 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 8157–8161, 2022.

[4] K Neuendorf. The pearson correlation coefficient vs. lin’s concordance coefficient.

[5] Chaya Bakshi. Random forest regression, 2020.

[6] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0:

A framework for self-supervised learning of speech representations. Advances in Neural

Information Processing Systems, 33:12449–12460, 2020.

[7] ASER Centre. Aser: The annual status of education report (rural) 2016. Technical report,

2017.

[8] JK Torgesen. Catch them before they fall: Identification and assessment to prevent read-

ing failure in young children (on-line). National Institute of Child Health and Human De-

velopment. Available: ldonline. org. ld_indepth/reading/torgesen_catchthem. html, pages

1–15, 1998.

[9] Melanie R Kuhn, Paula J Schwanenflugel, and Elizabeth B Meisinger. Aligning theory and

assessment of reading fluency: Automaticity, prosody, and definitions of fluency. Reading

research quarterly, 45(2):230–251, 2010.

[10] Jan E Hasbrouck and Gerald Tindal. Curriculum-based oral reading fluency norms for

students in grades 2 through 5. Teaching Exceptional Children, 24(3):41–44, 1992.

93

[11] Sheila W Valencia, Antony T Smith, Anne M Reece, Min Li, Karen K Wixson, and

Heather Newman. Oral reading fluency assessment: Issues of construct, criterion, and

consequential validity. Reading Research Quarterly, 45(3):270–291, 2010.

[12] Jackson J Liscombe. Prosody and speaker state: paralinguistics, pragmatics, and profi-

ciency. Columbia University, 2007.

[13] Zhou Yu, Vikram Ramanarayanan, David Suendermann-Oeft, Xinhao Wang, Klaus Zech-

ner, Lei Chen, Jidong Tao, Aliaksei Ivanou, and Yao Qian. Using bidirectional lstm recur-

rent neural networks to learn high-level abstractions of sequential features for automated

scoring of non-native spontaneous speech. In 2015 IEEE Workshop on Automatic Speech

Recognition and Understanding (ASRU), pages 338–345. IEEE, 2015.

[14] Lei Chen, Jidong Tao, Shabnam Ghaffarzadegan, and Yao Qian. End-to-end neural net-

work based automated speech scoring. In 2018 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 6234–6238. IEEE, 2018.

[15] Manraj Singh Grover, Yaman Kumar, Sumit Sarin, Payman Vafaee, Mika Hama, and Ra-

jiv Ratn Shah. Multi-modal automated speech scoring using attention fusion, 2020.

[16] Yao Qian, Patrick Lange, Keelan Evanini, Robert Pugh, Rutuja Ubale, Matthew Mulhol-

land, and Xinhao Wang. Neural approaches to automated speech scoring of monologue

and dialogue responses. In ICASSP 2019 - 2019 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 8112–8116, 2019.

[17] Klaus Zechner, Derrick Higgins, Xiaoming Xi, and David M Williamson. Automatic scor-

ing of non-native spontaneous speech in tests of spoken english. Speech Communication,

51(10):883–895, 2009.

[18] Hannah Muckenhirn, Vinayak Abrol, Mathew Magimai-Doss, and Sébastien Marcel. Un-

derstanding and visualizing raw waveform-based cnns. In Interspeech, pages 2345–2349,

2019.

[19] Sabrina Stehwien, Antje Schweitzer, and Ngoc Thang Vu. Acoustic and temporal repre-

sentations in convolutional neural network models of prosodic events. Speech Communi-

cation, 125:128–141, 2020.

94

[20] Haiyang Xu, Hui Zhang, Kun Han, Yun Wang, Yiping Peng, and Xiangang Li.

Learning alignment for multimodal emotion recognition from speech. arXiv preprint

arXiv:1909.05645, 2019.

[21] Guang Shen, Riwei Lai, Rui Chen, Yu Zhang, Kejia Zhang, Qilong Han, and Hongtao

Song. Wise: Word-level interaction-based multimodal fusion for speech emotion recogni-

tion. In INTERSPEECH, pages 369–373, 2020.

[22] Mariana Rodrigues Makiuchi, Kuniaki Uto, and Koichi Shinoda. Multimodal emotion

recognition with high-level speech and text features. arXiv preprint arXiv:2111.10202,

2021.

[23] Kamini Sabu and Preeti Rao. Prosodic event detection in children’s read speech. Computer

Speech Language, 68:101200, 2021.

[24] Sheida White, John Sabatini, Bitnara Jasmine Park, Jing Chen, Jared Bernstein, and

Mengyi Li. The 2018 naep oral reading fluency study. nces 2021-025. National Cen-

ter for Education Statistics, 2021.

[25] Shreeharsha B. S. Acoustic models for speech recognition in children’s reading miscue

detection. 2021.

[26] Fabien Ringeval, Björn Schuller, Michel Valstar, Shashank Jaiswal, Erik Marchi, Denis

Lalanne, Roddy Cowie, and Maja Pantic. Av+ ec 2015: The first affect recognition chal-

lenge bridging across audio, video, and physiological data. In Proceedings of the 5th

international workshop on audio/visual emotion challenge, pages 3–8, 2015.

[27] I Lawrence and Kuei Lin. A concordance correlation coefficient to evaluate reproducibil-

ity. Biometrics, pages 255–268, 1989.

[28] Vedhas Pandit and Björn Schuller. The many-to-many mapping between the concordance

correlation coefficient and the mean square error. arXiv preprint arXiv:1902.05180, 2019.

[29] Bagus Tris Atmaja and Masato Akagi. Evaluation of error-and correlation-based loss

functions for multitask learning dimensional speech emotion recognition. In Journal of

Physics: Conference Series, volume 1896, page 012004. IOP Publishing, 2021.

95

[30] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

Proceedings of International Conference on Learning Representations, San Diego, CA,

2015.

[31] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Op-

tuna: A next-generation hyperparameter optimization framework. In Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery amp; Data Min-

ing, KDD ’19, page 2623–2631, New York, NY, USA, 2019. Association for Computing

Machinery.

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[33] Jonathan Boigne, Biman Liyanage, and Ted Östrem. Recognizing more emotions with

less data using self-supervised transfer learning. arXiv preprint arXiv:2011.05585, 2020.

[34] Manon Macary, Marie Tahon, Yannick Estève, and Anthony Rousseau. On the use of

self-supervised pre-trained acoustic and linguistic features for continuous speech emotion

recognition. In 2021 IEEE Spoken Language Technology Workshop (SLT), pages 373–380.

IEEE, 2021.

[35] Nik Vaessen and David A Van Leeuwen. Fine-tuning wav2vec2 for speaker recognition.

In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 7967–7971. IEEE, 2022.

[36] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[38] Mayank Sharma. Multi-lingual multi-task speech emotion recognition using wav2vec 2.0.

In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 6907–6911. IEEE, 2022.

96

[39] Po-Han Chi, Pei-Hung Chung, Tsung-Han Wu, Chun-Cheng Hsieh, Yen-Hao Chen,

Shang-Wen Li, and Hung-yi Lee. Audio albert: A lite bert for self-supervised learning

of audio representation. In 2021 IEEE Spoken Language Technology Workshop (SLT),

pages 344–350. IEEE, 2021.

[40] John Hewitt. Designing and interpreting probes, 2019.

[41] Yi-Chen Chen, Shu-wen Yang, Cheng-Kuang Lee, Simon See, and Hung-yi Lee. Speech

representation learning through self-supervised pretraining and multi-task finetuning.

arXiv preprint arXiv:2110.09930, 2021.

[42] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk,

and Quoc V Le. Specaugment: A simple data augmentation method for automatic speech

recognition. arXiv preprint arXiv:1904.08779, 2019.

[43] Raghavendra Pappagari, Jesús Villalba, Piotr Żelasko, Laureano Moro-Velazquez, and

Najim Dehak. Copypaste: An augmentation method for speech emotion recognition. In

ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pages 6324–6328. IEEE, 2021.

[44] Wei-Ning Hsu, Anuroop Sriram, Alexei Baevski, Tatiana Likhomanenko, Qiantong Xu,

Vineel Pratap, Jacob Kahn, Ann Lee, Ronan Collobert, Gabriel Synnaeve, et al. Ro-

bust wav2vec 2.0: Analyzing domain shift in self-supervised pre-training. arXiv preprint

arXiv:2104.01027, 2021.

[45] Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Na-

man Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, et al. Xls-

r: Self-supervised cross-lingual speech representation learning at scale. arXiv preprint

arXiv:2111.09296, 2021.

[46] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli.

Data2vec: A general framework for self-supervised learning in speech, vision and lan-

guage. arXiv preprint arXiv:2202.03555, 2022.

[47] Rishabh Jain, Mariam Yiwere, Dan Bigioi, and Peter Corcoran. Can self-supervised learn-

ing solve the problem of child speech recognition? arXiv preprint arXiv:2204.05419,

2022.

97

[48] Mirco Ravanelli, Jianyuan Zhong, Santiago Pascual, Pawel Swietojanski, Joao Monteiro,

Jan Trmal, and Yoshua Bengio. Multi-task self-supervised learning for robust speech

recognition. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 6989–6993. IEEE, 2020.

[49] Mirco Ravanelli, Jianyuan Zhong, Santiago Pascual, Pawel Swietojanski, Joao Monteiro,

Jan Trmal, and Yoshua Bengio. Multi-task self-supervised learning for robust speech

recognition. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 6989–6993. IEEE, 2020.

[50] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an

asr corpus based on public domain audio books. In 2015 IEEE international conference

on acoustics, speech and signal processing (ICASSP), pages 5206–5210. IEEE, 2015.

[51] Sabrina Stehwien and Ngoc Thang Vu. Prosodic event recognition using convolutional

neural networks with context information. arXiv preprint arXiv:1706.00741, 2017.

98

Acknowledgments

This work would not have been possible without the constant support and guidance of my

advisor, Prof. Preeti Rao. I am indebted to ma’am for not only her research inputs but also for

teaching me the process of conducting systematic research. Looking back, I can clearly see a

transformation in my approach towards research and I have Prof. Rao to thank for it. I would

also like to express my gratitude towards Kamini Sabu for her valuable inputs throughout this

endeavour and experimental results on the baseline work. My sincere thanks to VNS Saketh

and Rohit MA, the system administrators of DAP lab, who maintained the GPUs which were

used for all experiments in this work. I would also like to thank Nagesh Nayak for his valuable

inputs from the perspective of deployment and the demo HTML results. Thanks to Avinash

Gaikwad and Asha ma’am for their clerical help. A special shout-out to Hugging Face, the

open-source community which hosts the Wav2vec2.0 model we used in this work. As deep

learning models grow bigger day-by-day, hosting them in an open-source fashion has become

invaluable for those without access to giant clusters of GPUs. I would not have survived this

pandemic without my friends, who provided companionship in testing times and made my final

year of college memorable. Lastly, this work would have been impossible without my parents,

my brother, my grandmother and my extended family who supported me through thick and thin.

99

	Abstract
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Summary of Stage 1
	Dataset
	Comprehensibility ratings
	ASR and manually transcribed data

	Ensembling
	Evaluation metrics
	Outline of report
	Contributions

	Baseline systems with hand-crafted features
	Hand-crafted features
	Neural network classifiers
	Recording-level models
	Word-level models

	Training details
	Loss functions
	Hyperparameters and tuning

	Results

	Wav2vec2.0-based architecture
	System architectures
	W2Vanilla
	W2VAligned
	Effectiveness of layers
	Fine-tuning the transformer

	Experimental results
	W2Vanilla
	W2VAligned

	Probing Wav2vec2.0
	Architecture
	Feature sets
	Procedure
	Loss function
	Training all layers

	Results
	Recording-level probes
	Word-level probes
	Frame-level probes

	Concluding remarks

	HC feature concatenation
	Architectures
	W2VCat
	RNN Fusion

	W2VCat results
	Recording-level HC features
	Word-level HC features

	RNN Fusion results

	Multi-task Learning
	Architecture
	Loss
	Results
	Recording-level auxiliary tasks
	Word-level auxiliary tasks
	Concluding remarks

	Summary
	Final results
	Future Work

	Wav2vec2.0 for PED
	Wav2vec2.0-based architecture
	Results

	Word-level pooling
	Timing Analysis
	References
	Acknowledgments

