Speech Compression using Deep Learning

 $\bullet \bullet \bullet$

EE 679 Course Project IIT Bombay

> Mithilesh Vaidya 17D070011

Introduction

- Why? Efficient for storage and transmission!
- 2 classes:
 - Waveform-based: Generic, may not exploit speech information Goal is to minimise MSE
 E.g. PCM, DPCM, delta modulation
 - 2. Parametric assume an underlying model E.g. CELP, simple LP filtering, ANNs

Focus on: Speaker-dependent WaveNet Vocoder [1]

WaveNet [2]

- Breakthrough DNN model which can generate speech sample-by-sample
- Challenging due to large sampling rate
- Stack of convolution layers model the probability:

$$p\left(\mathbf{x}\right) = \prod_{t=1}^{T} p\left(x_t \mid x_1, \dots, x_{t-1}\right)$$

- Observe the causal nature of convolution filters
- Dilation increases temporal receptive field
- No pooling → Output size = Input size

WaveNet (continued)

- μ-law companding tx to get 256 output bins (instead of 16-bit i.e. 65,536)
- Activation function:

$$\mathbf{z} = anh\left(W_{f,k} st \mathbf{x}
ight) \odot \sigma\left(W_{g,k} st \mathbf{x}
ight)$$

To summarise:

- Input: Raw waveform of T samples
- WaveNet: Gives a Tx256 vector of probability distributions
- Loss: Simple Log Likelihood

Train using standard ML techniques

Conditional WaveNet

- To condition on any variable of interest: $p(\mathbf{x} | \mathbf{h}) = \prod_{t=1}^{T} p(x_t | x_1, \dots, x_{t-1}, \mathbf{h})$
 - Augment the activation function:

$$\mathbf{z} = anh \left(W_{f,k} st \mathbf{x} + V_{f,k}^T \mathbf{h}
ight) \odot \sigma \left(W_{g,k} st \mathbf{x} + V_{g,k}^T \mathbf{h}
ight)$$

- Intuition: Guide WaveNet in producing desired characteristics
- Examples:

- Desired Speaker: *h* is one-hot encoded
 Global conditioning since constant across utterance
- TTS: Supply information about text to generate e.g. embeddings, F0
 Local since varying with time

Speech Coding in [1]

Encoder (per-frame basis):

- Extract mel-cepstrum (say 25) from either STFT or smoothened envelope using STRAIGHT analysis [3]
- Extract pitch F0 using RAPT [4]
- 25 ms window, 5 ms hop

Decoder:

- Feed above features to a trained conditional WaveNet model
- Generate speech sample-by-sample

Features

No need of separately modelling excitation signal since no encoding regarding:

- Voiced/Unvoiced
- Glottal shape

Although parameters sent on a frame-by-frame basis,

- WaveNet is more *powerful* than a linear time-invariant system i.e. the temporal structure can be fine-tuned
- No assumption about stationarity within a segment

Baseline

Features:

- Plain: Mel-Cepstrum from STFT
- STRAIGHT [3]: Smoothen envelope to reduce periodic redundancies, then extract coefficients

Synthesis:

- MLSA [5]: Pass coefficients through this filter to synthesize speech
- WaveNet: 4 separate models, 1 for each speaker

Comparative Method	Source of mel-cepstrum	Waveform Synthesis		
Plain-MLSA	STFT	MLSA filter		
STRAIGHT-	Spectrum	MLSA filter		
MLSA	envelop			
Plain-WaveNet	STFT	WaveNet		
STRAIGHT-	Spectrum	WaveNet		
WaveNet	envelop			

Evaluation Measures

For each frame:

- x(n)/s: synthesized speech
- y(n)/r: original speech
- N: # samples in a frame
- Y(f) and X(f): Fourier Transforms
- F: Number of frequency bins

Averaged over all frames

RMSE: actual spectral distortion MCD: envelope distortion

$$SNR ~=~ 10 \ln_{10} \left(rac{\sum_{n=1}^{N} y(n)^2}{\sum_{n=1}^{N} \left(x(n) - y(n)
ight)^2}
ight)$$

$$RMSE = \sqrt{\frac{1}{F} \sum_{f=1}^{F} \left(20 \log_{10} \frac{|Y(f)|}{|X(f)|} \right)^2}$$

$$MCD = \frac{10}{\log 10} \sqrt{2 \sum_{m=1}^{M} (c_r(m) - c_s(m))^2}$$

Mean Cepstral Distance

$$RMSE(f_{\rm o}) = 1200\sqrt{(\log_2(F_r) - \log_2(F_s))^2}$$

Results

(a) SNR (dB); distortion in time domain				(b) RMSE (dB); distortion in frequency domain				
Method	slt	bdl	clb	rms	slt	bdl	clb	rms
MLSA (P)	$ -0.24 \pm 0.31$	-2.7 ± 0.19	-0.044 ± 0.35	-2.2 ± 0.52	$\textbf{7.9} \pm \textbf{0.13}$	$\textbf{7.9} \pm \textbf{0.21}$	$\textbf{7.8} \pm \textbf{0.23}$	$\textbf{8.1} \pm \textbf{0.97}$
MLSA (ST)	3.7 ± 0.32	-2.6 ± 0.16	-1.9 ± 0.31	-2.3 ± 0.45	8.3 ± 0.31	8.6 ± 0.48	7.9 ± 0.43	8.4 ± 0.53
WaveNet (P)	$\textbf{4.1} \pm \textbf{0.23}$	$\textbf{3.6} \pm \textbf{0.21}$	$\textbf{3.8} \pm \textbf{0.38}$	$\textbf{4.0} \pm \textbf{1.0}$	8.8 ± 0.21	8.6 ± 0.21	9.2 ± 0.30	9.0 ± 1.3
WaveNet (ST)	3.7 ± 0.32	2.2 ± 0.28	3.7 ± 0.32	2.6 ± 0.94	9.0 ± 0.35	9.4 ± 0.30	9.1 ± 0.28	9.5 ± 1.3

Table 3: Comparison of distortion between acoustic features of natural speech and synthesized speech

(a) Mel-cepstrum (MCD; dB)

(b) Fundamental frequency (RMSE; cent)

Method	slt	bdl	clb	rms	slt	bdl	clb	rms
MLSA (P)	3.8 ± 0.027	3.8 ± 0.050	4.6 ± 0.050	3.6 ± 0.054	2.9 ± 0.21	9.4 ± 1.6	2.4 ± 0.19	6.4 ± 0.63
MLSA (ST)	$\textbf{2.4} \pm \textbf{0.047}$	$\textbf{2.3} \pm \textbf{0.054}$	$\textbf{2.5} \pm \textbf{0.049}$	$\textbf{2.5} \pm \textbf{0.059}$	2.7 ± 0.18	8.7 ± 1.6	2.1 ± 0.13	6.2 ± 0.79
WaveNet (P)	5.5 ± 0.052	5.5 ± 0.050	6.8 ± 0.11	4.9 ± 0.053	$\textbf{1.9} \pm \textbf{0.22}$	7.5 ± 1.6	1.1 ± 0.087	3.7 ± 1.4
WaveNet (ST)	5.7 ± 0.045	5.7 ± 0.053	6.8 ± 0.045	5.1 ± 0.052	2.3 ± 0.13	9.7 ± 2.0	1.1 ± 0.13	5.6 ± 1.5

- WaveNet has low SNR, F0 distortion
- MLSA has low RMSE, MCD

Results

- slt, clb: female ; bdl, rms: male
- Subjective evaluation tells a different story than objective evaluation
- Average MOS for WaveNet > MLSA
- As expected, performance for female speakers is worse

Conclusion

Limitations:

- Speaker-dependent: 1 hour of data per speaker
- Slow: 2 days to train WaveNet for one speaker
 6 minutes to synthesize a 3-second speech => nowhere close to real-time

Future Scope:

- Try out other features
- Make it speaker-independent
- Reduce time taken for synthesis

References

[1] Speaker-dependent WaveNet vocoder (2017)

[2] WaveNet: A generative model for raw audio (2016)

[3] <u>STRAIGHT</u> (1999)

[4] <u>RAPT</u>

[5] <u>MLSA</u>

Recent papers:

[6] LOW BIT-RATE SPEECH CODING WITH VQ-VAE AND A WAVENET DECODER (2019)