EE708 Seminar Communication with Noiseless Feedback (Schalkwijk and Kailath 1966)

Pranay Reddy 170070022 Mithilesh Vaidya 17D070011

Overview

Problem Formulation	Encoding	Error Analysis	Extensions
 Background Motivation 	 Robbins-Munro Procedure 	 Channel Capacity 	 Bandwidth Limited Signals
 Feedback Channels 	• RM in feedback channels	 Proof of Channel Capacity 	 Noisy Feedback Links

Channels without feedback

- For continuous time channels, regular-simplex-based coding is popular
- Each of the M continuous-time equal-energy signals have low cross-correlation (zero for orthogonal codes in case of large M)
- For decoding, use a bank of M correlation detectors whose outputs are scanned
- Argmax is the decoded message

Analysis

- For channels without feedback, the below holds for large M (from [5])
- Here, T: time duration of signal, C: Capacity, R: Rate

$$\begin{split} P_{e, \text{ orth }}(M,T) &= \frac{\text{constant}}{T^{\beta}} e^{-TE(R)} \\ E(R) &= \left\{ \begin{array}{l} C/2 - R, & 0 \leq R \leq C/4 \\ (\sqrt{C} - \sqrt{R})^2, & \frac{C}{4} \leq R \leq C \end{array} \right\} \\ &1 \leq \beta \leq 2 \end{split}$$

$$\begin{array}{l} \bullet \quad \mathsf{P}_e = 10^{-7}, \, \mathsf{C} = 1 \text{ bit/second, } \mathsf{R} = 0.8\mathsf{C} \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 2030 \text{ whereas } \mathsf{T}_{fb} = 15 \\ \bullet \quad \mathsf{T}_{orth} = 10 \text{ whereas } \mathsf{T}_{fb} = 10 \text{$$

Motivation

- How can feedback help?
 - Simple encoding and decoding schemes
 - Double-exponential decrease in probability of error

- An example: In Space Communication:
 - Satellite -> Ground is noisy due to power constraints
 - Ground -> Satellite can be assumed to be noiseless since power can be very high!

Feedback Channels

- Channel Capacity is **unchanged** even in the presence of feedback (Shannon)
- Assumptions:
 - Transmitter -> Receiver link is noisy (Red)
 - Receiver -> Transmitter feedback link is perfect (Green)

Goal: Obtain x^* s.t. $f(x^*) = a$ for a given function f and scalar a

Assumption: Function evaluation is noisy i.e. $y_n = f(x_n) + z_n$ where z_n is some additive zero-mean noise e.g. $z_n \sim Normal(0, \sigma^2)$

Algorithm: $x_{n+1} = x_n - k_n (y_n - a)$; x_0 is a random initial guess

For convergence:

- $k_n > 0$, $\sum k_n = \infty$ and $\sum k_n^2$ is finite
- f(x) is non-decreasing
- f'(x*) exists and is positive
- Refer to [3] for more details

Example of RM

•	f(x) = exp(x)	n	x _n	f(x _n)	z _n	$\Delta x = -k_n (y_n - \alpha)$
•	a = 5 k _n = 1/n z _i ~ Normal(0, 1)	0	1	2.718	1.691	0.591
•		1	1.591	4.91	-0.466	0.278
• Initia x ₀ =	Initial guess:	2	1.869	6.484	0.033	-0.506
	$x_0 = 1$	3	1.364	3.911	0.408	0.17
		4	1.534	4.637	-0.789	0.23
		5	1.764	5.838	0.002	

After 10 iterations, $|x^* - x_{10}| = |\log(5) - 1.58| = 0.029$

Plot

RM in our problem

Think of the:

- Transmitter: Function Evaluator/Environment which gives noisy evaluation
- Receiver: Agent who wishes to find solution to f(x) = a

Procedure:

- 1. Transmitter has to send one of M possible messages
- 2. Divide the unit interval into M disjoint equal-length intervals
- 3. Choose midpoint of each interval as the message point θ

Set a to 0 and $f(x) = m(x - \theta)$ where:

- θ is the message to be sent
- m is some positive value

Example

- $M = 4 \rightarrow \theta \in \{0, 1, 2, 3\}$
- To send: $1 \rightarrow \theta = 0.375$
- $f(x) = x \theta$

Encoding

After N iterations:

If $X_{N} \in \{\text{green region}\}$: successful decoding

Else: incorrect decoding

Channel Capacity

- Achieves capacity for gaussian channels without bandwidth constraint \circ C = P_{av}/N₀ nats/second
- It can be shown the same maximum rate for all additive iid noise channels (not only gaussian)

•
$$P_{e,fb} = \frac{1}{\sqrt{6\pi \frac{C}{R}e^{2(C-R)T}}} \exp\left[-\frac{3C}{2R}e^{2(C-R)T}\right]$$

Gaussian Channel Capacity - Proof Sketch

- 1. Prove that the received message is gaussian distributed with variance inversely proportional to N (N is message size/no of iterations of RM)
- 2. Thus obtain the formula for rate R = In M / T = In N^{0.5}/T
- 3. Compute the expression for average power on N transmissions in terms of time interval of transmission T (since it is a continuous time channel)
- 4. Substitute T = $\ln N / 2R$ and obtain bound on R.

Error

Analysis

$$X_{n+1} = X_n - \frac{1}{\alpha n} Y_n(X_n)$$

Feedback

$$X_{n+1} = X_n - \frac{1}{\alpha n} Y_n(X_n)$$
Transmission
Substituting $Y_n(X_n) = \alpha(X_n - \theta) + Z_n$
Gaussian Noise
 $X_{n+1} = (\frac{n-1}{n})X_n + \frac{\theta}{n} - \frac{Z_n}{\alpha n}$
 $nX_{n+1} = (n-1)X_n + \theta - \frac{Z_n}{\alpha}$

$$\sum_{i=2}^{n+1} (i-1)X_i = \sum_{i=1}^n ((i-1)X_i + \theta - \frac{Z_i}{\alpha})$$
$$nX_{n+1} = n\theta - \sum_{i=1}^n \frac{Z_i}{\alpha}$$
$$X_{n+1} = \theta - \frac{\sum_{i=1}^n Z_i}{n\alpha}$$
$$X_{n+1} \sim \mathcal{N}(\theta, \frac{\sigma^2}{\alpha^2 n})$$

$$\begin{split} \sum_{i=2}^{n+1} (i-1)X_i &= \sum_{i=1}^n ((i-1)X_i + \theta - \frac{Z_i}{\alpha}) \\ nX_{n+1} &= n\theta - \sum_{i=1}^n \frac{Z_i}{\alpha} \\ X_{n+1} &= \theta - \frac{\sum_{i=1}^n Z_i}{n\alpha} \\ X_{n+1} &\sim \mathcal{N}(\theta, \frac{\sigma^2}{\alpha^2 n}) \qquad \mathbf{P_e} \Rightarrow \mathbf{0} \text{ as } \mathbf{n} \Rightarrow \infty \end{split}$$

To decode a message correctly, we need X_{n+1} to be in the range $\theta \pm \frac{1}{2M}$ Hence $P_e = 2 \operatorname{erfc}(\frac{\frac{1}{2}M^{-1}}{\sigma/\alpha\sqrt{N}})$ For $P_e \to 0$, $M(N) = N^{\frac{1}{2}-\epsilon}$ Also, $R = \frac{\log M(N)}{T}$ As $\epsilon \to 0, R \to C \implies C = \frac{\log N}{2T}$

Steps 3 & 4

$$P_{av}(N) = \frac{1}{T} E \left[\alpha^{2} (X_{1} - \theta)^{2} + \sum_{i=1}^{N-1} \alpha^{2} (X_{i+1} - \theta)^{2} \right]$$
$$P_{av}(N) = \frac{2C}{\log N} \left(\frac{\alpha^{2}}{12} + \sigma^{2} \sum_{i=1}^{N-1} \frac{1}{i} \right)$$
$$\lim_{n \to \infty} P_{av}(N) = 2\sigma^{2}C = N_{0}C$$
$$C = P_{av}/N_{0}$$

EE 708: Information Theory Seminar

22

Probability of error

- From step 2: $P_e = 2 \operatorname{erfc}(\frac{\frac{1}{2}M^{-1}}{\sigma/\alpha\sqrt{N}})$
- Using a well-known asymptotic formula for *erfc* and substituting the value for M and optimal a (after differentiation):

- N = e^{2CT} and R = $(1 \varepsilon)C$...(by definition)
- Hence, we finally get:

$$P_epprox rac{\exp\left[-rac{3C}{2R}e^{2(C-R)T}
ight]}{\left[6\pirac{C}{R}e^{2(C-R)T}
ight]^{1/2}}$$

$$P_e pprox rac{\exp\left[-rac{3}{2} \left(rac{R}{C}
ight)^{-1} N^{\epsilon}
ight]}{\left[6 \pi ig(rac{R}{C}ig)^{-1} N^{\epsilon}
ight]^{1/2}}$$

Extensions & Additional Discussion

- Band Limited Signals
 - Achieved a similar scheme that attains channel capacity for bandlimited signals
- Noise in feedback link
 - In the presence of feedback noise, capacity is not attained.
 - To enforce 0 error for large N, rate tends to 0.
- Non Gaussian Additive Noise
 - The proof still holds, but to prove X_n is gaussian asymptotically Sack's theorem is required

Key Takeaways

- Noiseless Wideband Feedback Channel Coding Schemes
 - Simplify encoding & decoding
 - Practically occurring scenario such as ground-space communication
- Schalwijk & Kailath Encoding Scheme
 - Based on Robbins-Munro Procedure
 - Achieves optimal channel capacity for gaussian channels
 - General scheme can be applied to other additive noise models
 - Probability of Error decays faster as a function of T when compared with orthogonal coding

Thank You

[1] <u>A coding scheme for additive noise channels with feedback--I: No bandwidth</u> <u>constraint</u> - Authors J. Schalkwijk, T. Kailath 1966

[2] <u>https://www2.isye.gatech.edu/~yxie77/ece587/Lecture16.pdf</u>

[3]

https://en.wikipedia.org/wiki/Stochastic_approximation#Robbins-Monro_algorithm

[4] <u>A coding scheme for additive noise channels with feedback--II: Band-limited</u> <u>signals</u> - Author J. Schalkwijk 1966

[5] L. H. Zetterberg, "Data transmission over a noisy Gaussian channel"

