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Overview

Problem Formulation Encoding Error Analysis Extensions

e Background e Robbins-Munro e Channel e Bandwidth
Procedure Capacity Limited Signals
e Motivation
e RMin feedback e Proof of e Noisy Feedback
channels Channel Links
e Feedback Capacity

Channels
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Channels without feedback

e For continuous time channels, regular-simplex-based coding is popular

e Each of the M continuous-time equal-energy signals have low cross-correlation
(zero for orthogonal codes in case of large M)

e For decoding, use a bank of M correlation detectors whose outputs are scanned

e Argmax is the decoded message
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Analysis

e For channels without feedback, the below holds for large M (from [5])
e Here, T: time duration of signal, C: Capacity, R: Rate

constant _,p (R)
T8  © e P_=107,C= 1 bit/second, R = 0.8C
e T_.=2030whereas T, =15

Pe, orth (M7 T) =

[ C/2-R, 0<R<C/4
E<R)_{(\/E—\/E)2, C<R<C }
1<B8<2
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Motivation
Formulation

e How can feedback help?
o Simple encoding and decoding schemes
o Double-exponential decrease in probability of error

e An example: In Space Communication:
o Satellite -> Ground is noisy due to power constraints
o Ground -> Satellite can be assumed to be noiseless since power can be very
high!
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Feedback Channels
Formulation

Noise
N(0,0%)

Message X;(0, Y n
% 5 Encoder 6, ) , C:?;":f' —y;==3» Decoder —> §
a Message
Estimate
Feedback Link

e Channel Capacity is unchanged even in the presence of feedback (Shannon)

e Assumptions:
o  Transmitter -> Receiver link is noisy (Red)
o  Receiver -> Transmitter feedback link is perfect (Green)
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Robbins-Munro Algorithm (RM)

Goal: Obtain x* s.t. f(x*) = a for a given function f and scalar a

Assumption: Function evaluation is noisy i.e. y =1f(x_) + z_where z_is some
additive zero-mean noise
e.g. z_ ~ Normal(0, o)

Algorithm: x .. =x_ -k (y -a); X,is a random initial guess
For convergence:

e k >0,>k = and >k ?is finite
e f(x)is non-decreasing

e f(x*)exists and is positive

e Refer to [3] for more details

7 EE 708: Information Theory Seminar




Example of RM

o f(x)=exp(x) n X f(x ) z Ax=-k (y -a)
® a=9o 0 1 2718 1.691 0.591
° kn =1/n
e 2 ~Normal(0, 1) 1 1.591 4.91 .0.466 | 0.278
e |[nitial guess: 2 1.869 6.484 0.033 | -0.506
X. =1
0 3 1.364 3.911 0.408 0.17
4 1.534 4.637 0.789 | 0.23
5 1.764 5.838 0.002

After 10 iterations, |x* - x, | = [log(3) - 1.58| = 0.029
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Plot

Robbins Munro for exp(x) = 5
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RM in our problem
g

Think of the:

e Transmitter: Function Evaluator/Environment which gives noisy evaluation
e Receiver: Agent who wishes to find solution to f(x) = a

Procedure:

1. Transmitter has to send one of M possible messages
2. Divide the unit interval into M disjoint equal-length intervals
3. Choose midpoint of each interval as the message point 6

Set a to 0 and f(x) = m(x - 6) where:

e O is the message to be sent
e mis some positive value
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Example

e M=4->0¢{0,1,2,3}
e Tosend:1->6=0.375
o f(x)=x-6

After N iterations:
If X, € {green region}: successful decoding

Else: incorrect decoding

0o b—e—ov 0 —6——F——6—

g

1
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Channel Capacity
Analysis

e Achieves capacity for gaussian channels without bandwidth constraint
o C=P_/N, nats/second

e It can be shown the same maximum rate for all additive iid noise channels (not
only gaussian)

P 1 3C 2(C-R)T|

fb = CXP|—=C
4 \/677%62(C—R)T [ 2R
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Analysis

Gaussian Channel Capacity - Proof Sketch

1.

Prove that the received message is gaussian distributed with variance
inversely proportional to N (N is message size/no of iterations of RM)
Thus obtain the formula for rate R=In M /T = In N%>/T

Compute the expression for average power on N transmissions in terms of
time interval of transmission T (since it is a continuous time channel)
Substitute T =In N / 2R and obtain bound on R.
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Step

Xn — Xn — _Yn Xn
1= Xo— Yo (Xa)
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Step

1
/Xn-l—l =X, — _Yn(Xn)

Feedback an \ o
Transmission
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Step 1

1
/Xn+1 =X, — _Yn(Xn)

Feedback an \ o
Transmission
Substituting Y, (X,) = a(X,, — 0) + Z,

Gaussian Noise
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Step 1

1
/Xn+1 =X, — _Yn(Xn)

Feedback an \ o
Transmission
Substituting Y, (X,) = a(X,, — 0) + Z,

n — 1 s, Z'n Gaussian Noise
Xn — Xn - T
i ( n ) T n an
ZTL
nX,y1=Mn-1X,+0— —
v
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Step

n+1 n 7.
Y E-DX=) ((-1)Xi+6-=)
=2 =1 &
n ZZ
nXn11 =nb — ; —

mn
Yoo 1
Xn—l—l — 9 — =1 !
nao

2
o
Xn-l—l o N(H, —)

a’n

18 EE 708: Information Theory Seminar




Step

n+1

n | ZL
Y E-DX; =) ((-1)X;+6—=)
=2 g=1 &
mn Z{-
n = nb — —
NXpii =N ; -
X =0 — ==
n—+1 .
52
Xny1 ~N(0, =) P_=0 as n=
a“n
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Step 2

To decode a message correctly, we need Xn+1 to be in the range 0 & 537

Hence P, = 2erfc(-2 :

M

LTw)
o/aVN

For P, — 0, M'(N) Nz—¢

log M (N
Also, R = 8 2(N)

Ase—0,R—C = C ="~
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Steps 3 &4

P..(N) = %E[J(Xl — 0 + : o’ (X ey ~ 9)2]
2C (12 ~— 1
P, (N - o =
(V) = logN 12 7 - 7

lim P,,(N) = 20°C = NoC

n—00

C = P,,/Ny
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Probability of error
Analysis

1ar—1
2

e From step 2: =
P, = 2erfc( a/a\/ﬁ)

i i 3 (R 1are

e Using a well-known asymptotic formula for erfc and exp|—35 (U) N
substituting the value for M and optimal a (after differentiation): P, =~
6m(Z) ' Ne 2
C

e N=e*TandR=(1-¢)C ...(by definition)

e Hence, we finally get:

Pe - exp[_ % ez(C—R)T]

(6 % 62(C—R)T} 1/2
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Extensions & Additional Discussion

e Band Limited Signals
o Achieved a similar scheme that attains channel capacity for bandlimited
signals
e Noise in feedback link
o In the presence of feedback noise, capacity is not attained.
o To enforce 0 error for large N, rate tends to O.
e Non Gaussian Additive Noise
o The proof still holds, but to prove X is gaussian asymptotically Sack’s
theorem is required
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Key Takeaways

e Noiseless Wideband Feedback Channel Coding Schemes
o Simplify encoding & decoding
o Practically occurring scenario such as ground-space communication
e Schalwijk & Kailath Encoding Scheme
Based on Robbins-Munro Procedure
Achieves optimal channel capacity for gaussian channels
General scheme can be applied to other additive noise models
Probability of Error decays faster as a function of T when compared with
orthogonal coding

o O O O
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Thank You
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