
How does In-Context
Learning work?
Based on ‘An Explanation of In-context Learning as Implicit Bayesian Inference’

Presented by: Mithilesh Vaidya

What is In-Context Learning (ICL)?

● Ability of a LM to complete

a query based on

input-output examples

given in context

● Same sentence may have

different concepts but LM

figures the target

underlying concept and

predicts!

What can it do?
● Beats SOTA benchmarks for LAMBADA

(commonsense sentence completion) and

TriviaQA (question-answering)

● Beats models trained with supervision

Beyond benchmarks:

● Write code from natural language

descriptions

● Generalizing spreadsheet functions (better

FlashFill)

● Task mismatch: LLMs are pre-trained for next-token prediction ONLY; Model not explicitly

pre-trained to learn from examples

● No weight updates/fine-tuning; everything computed and stored in forward pass!

From a human perspective, it still feels like next-token prediction. Why not for LLMs?

● LLMs pre-trained for next-token prediction on coherent data

● Within a context, no abrupt transitions

● (Pre-training distribution) != (Prompt distribution) due to abrupt low-probability transitions

● No encoder-decoder architecture to force LM to learn underlying concept

Why is it mysterious?

Example: Wiki bios

Pre-training text Albert Einstein was a German-born theoretical
physicist, widely acknowledged to be one of the
greatest and most influential physicists of all time.

PT Structure Name -> Nationality -> Occupation -> …

Prompt Albert Einstein was German
Mahatma Gandhi was Indian
Marie Curie was ?

Prompt
Structure

Name -> Nationality -> \n -> Name -> Nationality -> \n
….

Very low probability
transitions:

● German -> Mahatma
● Indian -> Marie

Proposed framework

Step Humans LM

1 Observe all examples at once Input: Prompt (= IO pairs with delimiters)

2 Extract common underlying concept

from given examples

Infer/Locate θ* (latent) from prompt

3 Apply it to new example p(y
test

 | x
test

, θ*)

Note: This is a possible theory; many others such as meta-gradients
 We study a toy dataset (and not real text)

Bayesian Inference view

● Prompt provides evidence for model to sharpen the posterior distribution over concepts

● p(concept | prompt) concentrates on the underlying prompt concept

● We want p(concept | prompt) to converge to a delta distribution and pick out the correct concept

Key logical leap:

● LM will infer prompt concept from in-context examples, even though prompts are sampled from a

very different distribution!

● Connection to pre-training: to generate coherent text over time, it must learn underlying concept

Example of a prompt

Pre-training distribution

● Each document is a length T sequence sampled by:

● p(o1, o2, .., oT | θ) defined by Hidden Markov Model

● θ defines transition probability matrix for hidden states h
1

, …, h
T

● Intuitively, θ models document-level statistics such as format, sentiment, topic, etc.

● We wish to infer θ from the prompts

● Note: This is an assumption about how text is generated

● Assumption: Language model and data large enough to fit pre-training distribution

i.e. p
model

 = p
text

 = p

Prompt distribution

● For i = 1, …, n, the ith demonstration O
i
= [x

i
, y

i
] where x

i
 is input token sequence, y

i
 is output token

● Each O
i
 independently generated using:

1. Generate start hidden state h
i
start from prompt start distribution p

prompt
(ideally included in θ?

Why the same distribution?)
2. p(Oi | hi

start, θ*) = Pre-training distribution conditioned on concept θ*

● Prompt is a sequence of demonstrations S
n
 followed by test example x

test
:

~ p
prompt

Key Result

Under some assumptions, as n → ∞,

More examples → More signals for Bayesian Inference → Smaller Error

What we showWhat we can
obtain from LM

By structure of prompt:

By definition of
prompt

Abuse of notation: doesn’t p
prompt

 capture sequence of
prompts? How can it capture p

prompt
(h

test
start | x

test
) or

p
prompt

(y|x
test

)?

Heuristic Derivation

S
n

→ Simplify → p(y | xtest, θ
*)

This is where we
get rid of S

n
 using

Markov property
and are now left
with θ*

Sketch for limit of rn(θ)

Key challenge: Sequence of examples S
n
 in p(.) while p(.) generates each example independently

Solution: Factorise examples using assumptions on delimiter tokens i.e. prove:

Then, we can upper bound r
n
(θ):

< c Break into k (# tokens) KL terms
These are large due to mismatch

Generative IN-Context learning (GINC) dataset

● HMM hidden state at time t:

h
t
 = [v

t
, s

t
] where

v
t
 = entity (e.g. Einstein)

s
t
 = property (e.g. nationality, last name, etc.)

● Entities and Properties are modelled as independent

Markov chains

● Emission token is deterministic

given v
t
 and s

t
: M[v

t
, s

t
]

● Entity changes slowly: p(change) < 0.1

● Property changes quickly

GINC (continued)

● Concept θ: property transition matrix

5 Transition matrices generated independently (one for

each concept)

E.g. one for wiki bios, one for conversation, one for news

● Entity transition fixed for all concepts (Why? Leads to

different formatting of same set of ideas)

● Uniform mixture of HMMs over 5 concepts generates 1000

documents with ~10 million tokens total

● Start distribution: uniform across all 100 hidden states

GINC prompt generation

1. Sample concept θ uniformly at random
(choosing HMM mixture)

2. Then, sample uniformly for entities but fixed
starting property (sampled uniformly) to
maintain consistency in task e.g.

a. Entity: Sample uniformly from {Curie, Gandhi,
Curie} for each example

b. Property: Sample uniformly from {Name, DOB
month, Nationality} and fix for this prompt

c. Generate k tokens using HMM
d. Repeat a and c while using fixed start property

from b

3. For the last example, generate k - 1 tokens and
use last as ground truth

Simulations

Accuracy ↑ with

● ↑ sequence length

● ↑ number of examples

Intuition: both help distinguish

between transition matrix of concepts

Expected as more signal for inferring

concept

LSTM >~ Transformer!

K = length of each example

Accuracy = Number of correct output predictions

[Chance perf. = 1/vocab size where vocab size in {50, 100, 150}]

Empirical evidence for inferring θ*

Pre-train on random transitions ->
chance perf.

So? No underlying structure

Pre-trained on only one concept

Flat curves

Unseen concepts -> fails to extrapolate

So? Helps test if a concept was present in PT data.

Consequence: If Wiki bio never seen during PT,

difficult to expect the model to complete nationalities

in the given format

When there is no underlying concept

No explanation for experiment with only one concept!!

Guesses:

● Intuitively, if we have only concept, the task is easier?
● If only one concept, say Wiki bios, transition matrix (for properties) is fixed
● Model, during PT, still needs to learn the transitions for next-token prediction
● What is it instead learning, in order to minimize PT loss?
● Does diversity in concepts force it to factorise text into properties and entities, which are crucial

for in-context learning? But model is very large? No forced factorization?

Effect of model size and architecture

Observation:
Even when pre-train loss is same,
performance increases

Explanation:
Overparameterization

LSTM > Transformer
Why? Similar to HMM in
architecture!

Sensitivity to Example Ordering

Prompts generated from single context

Each training set ID contains 4 prompts

Each of the 4! = 24 permutations of these 4
prompts is one single dot

10-40% variation in performance! (reported in
another paper)

Not good!!

Questions

● Prompts such as [“News” // positive] is also low probability?

● Where in the architecture is the concept found? Is it distributed across weights or can we extract is

from one of the layers?

● Where is M[v
t
, s

t
] stored in the model?

References

Original paper: Xie, Sang Michael, et al. "An explanation of in-context learning as implicit bayesian inference."
arXiv preprint arXiv:2111.02080 (2021).

Blog Post by authors: How does in-context learning work? A framework for understanding the

differences from traditional supervised learning | SAIL Blog

https://ai.stanford.edu/blog/understanding-incontext/
https://ai.stanford.edu/blog/understanding-incontext/

