
Keyword Spotting

- Mithilesh Vaidya

https://methi1999.github.io

The problem
❖ Keyword Spotting (KWS) refers to the task of identifying a

unique, pre-defined keyword in either an audio file or a
continuous stream of audio. Since it is extensively used in mobile
devices to detect a trigger word, the algorithm should be both
power and computationally efficient

❖ It is often referred to as a ‘needle in a haystack’ problem since the
utterance of the word we are searching for is generally very rare
and hence the algorithm must learn to smartly ignore a wide-
range of background noises, non-keyword human speech, etc.
while remaining vigilant enough to detect the utterance of the
pre-defined keyword

Datasets

Two datasets are used:

1. The TIMIT dataset contains about 6300 recordings of
sentences, along with both frame-labelled phones and frame-
labelled words. This dataset is used for training a neural
network feature extractor, as described in the subsequent slides

2. The ‘Speech Commands’ (Speech) dataset by Google contains
65K one-second recordings of about 30 different words. Each
recording has the corresponding word label. This dataset is
used for testing the performance of the algorithm

Overview
The pipeline can be divided into the following steps:

1. Short audio clips (average of 6 words in each clip) are
generated for testing from the Speech dataset. Keywords which
are used as templates are also drawn from this dataset

2. Features are extracted (for both the clip and the template) in
regions where speech is detected

3. Resulting features of the clip and the template (of the region
containing speech) are compared by a variant of Dynamic Time
Warping (DTW) and an adaptive threshold decides if the
keyword is present in the clip

Generation of test data
1. Audio clips for testing are generated by concatenating 2-3
sets of 2-3 randomly chosen words from the Speech dataset,
each set being separated by a short randomly-chosen but
constrained silence. 15 such clips are generated.

2.Currently, the following words are included in the dataset:
'bed','cat','dog','one','marvin','two','go','eight', 'wow', 'five',
'happy', 'sheila', 'zero', 'house', 'nine', 'three'

3. 5 templates are randomly chosen from the entire Speech
dataset, which are compared with the above audio clips at test
time for measuring the performance of the KWS model

Silence detection
The signal is first normalised to the
range [0,1]. Then:

In case of a template, power spectra is
calculated for the 1-second keyword
and the contiguous frames where
power*70 > max(power) is satisfied,
are chosen, discarding the remaining
as silence/noise

e.g. if the above condition is satisfied
for frames: [43 … 46, 48, 50, 51, 52, 54
… 60, 63], we return the frames from
43 to 63.

Silence for audio clip
In case of the audio clip, the
criterion described above is used
with one minor change: there
could be multiple such
contiguous stretches of audio
(since we had randomly inserted
silences) and hence each such
stretch is returned as elements of
a list (e.g. if the frames satisfying
the condition are [10…50, 65, 66,
67, 145 … 160], then we return
features[[10 … 67], [145 … 160]]
as the final output

Note that [10 … 50, 65, 66, 67] was returned as
one segment because the number of frames of
silence in between these two audio segments
< 50(a threshold). This is because the frames
in the above case correspond to one set of 2-3

words as described previously . Splitting
them further is equivalent to splitting the clip
into individual word segments which is not
desirable as discussed in the later sections

Feature extraction
❖ Feature extraction is a crucial step since it transforms the raw

speech signal into a number of fixed-dimensional vectors. The
aim is to find a mapping such that the distance between two set
of vectors which contain the same word/phone is low

❖ Hence, the vectors encode the speech content by retaining the
important distinguishing features of the word/phone while
ignoring the variations found in the raw waveform from
person-to-person

❖ As of now, 2 methods for feature extraction have been studied
which are discussed in the subsequent slides.

MFCC features
MFCC features are widely used as they replicate
the sensitivity of the human ear

1.Calculate power spectra of the audio signal (a
window size of 25 ms and a hop of 10 ms is used
since it is safe to assume that the frequency
content of a signal is stationary in this window)

2.Apply the Mel Filterbank to the power spectra
and sum the energy in each filter

3.Take logarithm of Filterbank Energies

4.Since the above coefficients are correlated, take
DCT, keep coefficients 2-13, discard the rest

A set of 10 filters is shown
above. It simulates the

decreasing sensitivity of the
human hear to increasing

frequencies

Neural Network features
❖ The second approach is to use a neural network (NN) as a feature extractor. The

input to the neural network is the log Filterbank Energies discussed in the
previous step (We do not use MFCC since the NN can detect correlations and
adjust it’s parameters accordingly)

❖ We train the NN to predict the phone present in the central frame

❖ Also, we study the impact of providing a context of ±4 frames as input to the NN.
This dramatically improves the performance since consecutive frames of speech
are highly correlated and hence boosts the accuracy

❖ We exploit the phone-level annotations in the TIMIT database by constructing a
database of (phone_id, features) pair where features are vectors (of dimension 26
when no context is provided and 26*(4+1+4) = 234 when a context of ±4 frames is
provided) and phone_id is the phone present in the central frame of the features

Architecture
The output layer consists of 39 nodes, each corresponding to a unique
phone-folded label

2 different NN architectures are studied:

1. The shallow model consists of 3 hidden layers with 512, 1024 and 512
nodes in the hidden layers

2. The deeper model consists of 5 hidden layers with 512, 1024, 2048, 1024
and 512 nodes in the hidden layers

The decision for the number of nodes was arbitrary and chosen since
increasing-decreasing powers of 2 is a common practice for choosing the
number of nodes, especially when there is no particular feature of the
dataset to exploit/drive the decision behind choosing the number of nodes

Phone folding
❖ The original TIMIT dataset contains 61

phones

❖ We combine some of them into a single
category to ease the training for the
NN model

❖ The table on the right indicates which
phones (in the right column) are
collapsed into a single category (in the
left column)

❖ Note that the phone ‘q’ is not used for
training since it marks a ‘global stop’

❖

Training
❖ A weighted cross-entropy loss function is used since the dataset is skewed towards

some phones (especially after folding). Weights are inversely proportional to the
number of training samples of the corresponding phone

❖ During testing, we take the argmax output and check if it matches the ground
truth phone label. Accuracy is defined as (number of correctly identified phones)/
(total phones tested)

❖ Dropout and ReLU are used to increase performance while BatchNorm and Adam
optimiser are used to speed up the training

❖ The best model (which is used for feature extraction) is the one which gives
minimum testing loss since on further training, the model overfits the training
data. However, testing accuracy was found to remain almost constant despite
overfitting. The skewed testing dataset could be a plausible reason for the anomaly

Deep NN with no context

Deep NN with ±4 context

Shallow NN with no context

Shallow NN with ±4 context

Comments

From the model loss/accuracy, we can conclude that:

❖ The shallow model with ±4 context is the best
performing model since it has the lowest minimum test
loss. The curves are smooth as opposed to the ones for
the deep model (which indicates model instability)

❖ The models without context are much inferior to the
ones which are provided context i.e. it fails to predict
the phones when given one frame at a time

Dynamic Time Warping (DTW)
❖ Once the features of the audio clip and the template are extracted, we

compare them using DTW

❖ The easiest option is to compute the DTW cost between the two and declare
that the keyword is present if the cost is below a certain threshold. Euclidean
distance is being used as a measure of distance between two vectors

❖ However, our clips contain 2-3 words of varying lengths (since it is closer to
a real-world speech utterance) and hence an absolute threshold for the DTW
cost is not effective

❖ An adaptive threshold is better because in general, absolute values in speech
processing are meaningless. Comparing them with some baseline makes
more sense

Sliding DTW

❖ Let the shape of the clip and the template be (m,d) and (n,d) (d is the dimension
of our feature vector) . Due to differences in the rate of speech, m ≠ n. (In our
case, m > n in almost all cases since the clip is a concatenation of 2-3 words)

❖ Assuming a range of (0.5, 2) when it comes to the human speech speed, we fix a
starting frame (say ’s’) and compute the DTW cost between the template and a
range of clip lengths (0.5*n to 2*n) and store the minimum of these distances in
a table called LMD whose key is ’s’ and value is the minimum distance  
i.e. LMD[s] = min (DTW(template, clip[s:s+k])) for k in range(0.5*n to 2*n)

❖ For intuition, if the word we are looking for starts at the 10th frame in the clip,
then LMD[10] will have the least distance among all other starting frames and
the varying number of frames it is compared with helps overcome the speech
rate differences among speakers

Histogram
❖ After obtaining the table of minimum distances, we compute a histogram of the

distances obtained in the previous step

❖ This is because the histogram of a template with a clip containing the template word,
has a different shape than the one which does not contain the word we are looking for

Clip with keyword Clip without keyword

Hypotheses
❖ The algorithm works on the hypothesis that when the keyword is

present in the clip, as compared to when it is absent, the histogram tends
to have a central peak, larger variance of Euclidean distance and a higher
occurrence of small distances. You can observe the 3 features in the
histograms on the previous slide. Also note the absolute value of the
distances

❖ Since we are interested in smaller distances, we consider the region of
the histogram to the left of:  
Threshold (TH) = Mode - c*𝞂

❖ We look for values for starting frame ’s’ whose minimum distance  
i.e. LMD[s] <= TH and consider these values of ’s’ for further processing

Finding sequences
❖ For the e.g. given in the slides, the set of frames below threshold

TH, when keyword is present are [222 223 224 225 226 227 288 289 290 291 292 293 294 295
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325]

❖ On the other hand, the frames below threshold when keyword is
not present is an empty set! (Both for c = 1) This is obvious from
the histogram)

❖ Then, we calculate the sequence of starting and ending contagious
frames for the set. In our case, it is  
[(222, 227), (288, 325)] when the keyword is present and obviously
an empty list for the other case since our starting set is anyways
empty!

Finding sequences (cont.)
❖ Then, we calculate the length of these sequences i.e.[6, 38] and [] for the

keyword and non-keyword clip

❖ We divide this by the number of template frames (34 in this case) which
gives [0.17, 1.17] and [] respectively. This is done because for longer
templates, more number of frames could be below the threshold and hence
we need to normalise this by taking the ratio (call these values as k_con)

❖ If you listen carefully, the template-containing clip has two utterances of
‘happy’, the latter one being long and more clear. Hence, more number of
starting frames match this utterance!

❖ We have a parameter k between (0,1) which decides if the keyword is present
or not i.e. if k_con >= k, we declare that the keyword is present, else it isn’t

Drawbacks of sliding DTW
❖ One drawback of the sliding DTW

approach is that it fails when the clip
and the template are of
approximately the same length and
have the same utterance of the word
(even when the two are the exact
same files)

❖ The issue is evident in the histogram
to the right. Note that the absolute
distance is close to 0 for majority of
the frames, as a result of which the
TH goes below 0!

This explains why we split the frame
into clips containing 2-3 words each

and not further split them into
individual word clips. The advantage

is that we can use simple power-
based analysis to detect the longer

silences

Testing
❖ We have two parameters to play with: 

c: controls the multiplier with standard deviation in the histogram. We carry out
experiments for c in the list [0.8, 1.2, 1.6, 2]  
k: controls the adaptive threshold for taking the final decision. The values of k
chosen for the experiments are [0.2, 0.4, 0.6, 0.8]

❖ Each pair of (c, k) values is considered for the experiment

❖ We generate 15 audio clips and 5 keyword templates; each template is compared
with each audio clip and the result is categorised into either one of  
 True +ve (TP)/True -ve (TN)/False +ve (FP) /False -ve (FN)  
Precision (TP/(TP+FP)) and Recall (TP/(TP+FN)) are recorded

❖ A good algorithm has both high Precision and high Recall

❖ The results are given in the next slide

Shallow NN without context

Deep NN without context

Shallow NN with ±4 context

Deep NN with ±4 context

MFCC

Comments

❖ From preliminary observations, we can conclude that
MFCC features give superior performance as compared to
the NN. Particularly, it is difficult to attain a good Precision
value with NN features, despite sacrificing on the Recall.

❖ On observing the argmax outputs of the NN, I observed
many labels which correspond to the ‘pau’ phone class.
This class contains the maximum number of training and
testing examples and hence the NN is highly skewed
towards this class.

Future steps
❖ Inspired by the dramatic increase in the test accuracy on

adding context, the next step would be to use a LSTM-based
feature extractor since a LSTM can automatically learn which
context to retain and ignore. A fixed number of context frames
may be suitable for some phones and unsuitable for the others

❖ A ‘confusion matrix’ is shown on the next slide. The shade of
square (i,j) denotes the proportion of testing samples such that
the ground truth phone_id was j but phone_id predicted by
the model was i. So ideally, we should have a perfect diagonal
with all values 1 and all non-diagonal entries as 0.

Future steps (cont.)

Confusion matrix for the shallow
model with ±4 context

❖ The plot tells us which two phones are
difficult to distinguish for the model.
For e.g. a lot of phones with id=6 ('ch')
are being confused with id=30 ('sh')
since the square (30,6) is pretty bright
and off-diagonal. Makes sense since
the sounds do sound similar!

❖ Armed with this knowledge, we could
improve the model by giving more
such examples for training/increasing
the weight of the loss for such
examples, etc.

Future steps (cont.)
❖ Separating the words in audio clips even when there is

negligible silence between them can help boost the
accuracy since it is much easier to compare a template
word with another word, as against a set of words

❖ Another popular variant is the CRNN, which first uses a
CNN on the spectrogram of the audio, followed by a
RNN (generally LSTM). Such an architecture can detect
complex frequency-time trends and may boost the
accuracy

Thank you!

