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The problem
❖ Keyword Spotting (KWS) refers to the task of identifying a 

unique, pre-defined keyword in either an audio file or a 
continuous stream of audio. Since it is extensively used in mobile 
devices to detect a trigger word, the algorithm should be both 
power and computationally efficient

❖ It is often referred to as a ‘needle in a haystack’ problem since the 
utterance of the word we are searching for is generally very rare 
and hence the algorithm must learn to smartly ignore a wide-
range of background noises, non-keyword human speech, etc. 
while remaining vigilant enough to detect the utterance of the 
pre-defined keyword



Datasets

Two datasets are used:

1. The TIMIT dataset contains about 6300 recordings of 
sentences, along with both frame-labelled phones and frame-
labelled words. This dataset is used for training a neural 
network feature extractor, as described in the subsequent slides

2. The ‘Speech Commands’ (Speech) dataset by Google contains 
65K one-second recordings of about 30 different words. Each 
recording has the corresponding word label. This dataset is 
used for testing the performance of the algorithm



Overview
The pipeline can be divided into the following steps:

1. Short audio clips (average of 6 words in each clip) are 
generated for testing from the Speech dataset. Keywords which 
are used as templates are also drawn from this dataset

2. Features are extracted (for both the clip and the template) in 
regions where speech is detected

3. Resulting features of the clip and the template (of the region 
containing speech) are compared by a variant of Dynamic Time 
Warping (DTW) and an adaptive threshold decides if the 
keyword is present in the clip



Generation of test data
1. Audio clips for testing are generated by concatenating 2-3 
sets of 2-3 randomly chosen words from the Speech dataset, 
each set being separated by a short randomly-chosen but 
constrained silence. 15 such clips are generated.

2.Currently, the following words are included in the dataset: 
'bed','cat','dog','one','marvin','two','go','eight', 'wow', 'five', 
'happy', 'sheila', 'zero', 'house', 'nine', 'three'

3. 5 templates are randomly chosen from the entire Speech 
dataset, which are compared with the above audio clips at test 
time for measuring the performance of the KWS model



Silence detection
The signal is first normalised to the 
range [0,1]. Then: 

In case of a template, power spectra is 
calculated for the 1-second keyword 
and the contiguous frames where 
power*70 > max(power) is satisfied, 
are chosen, discarding the remaining 
as silence/noise

e.g. if the above condition is satisfied 
for frames: [43 … 46, 48, 50, 51, 52, 54 
… 60, 63], we return the frames from 
43 to 63.



Silence for audio clip
In case of the audio clip, the 
criterion described above is used 
with one minor change: there 
could be multiple such 
contiguous stretches of audio 
(since we had randomly inserted 
silences) and hence each such 
stretch is returned as elements of 
a list (e.g. if the frames satisfying 
the condition are [10…50, 65, 66, 
67, 145 … 160], then we return 
features[[10 … 67], [145 … 160]] 
as the final output

Note that [10 … 50, 65, 66, 67] was returned as 
one segment because the number of frames of 
silence in between these two audio segments 
< 50(a threshold). This is because the frames 
in the above case correspond to one set of 2-3 

words as described previously . Splitting 
them further is equivalent to splitting the clip 
into individual word segments which is not 
desirable as discussed in the later sections



Feature extraction
❖ Feature extraction is a crucial step since it transforms the raw 

speech signal into a number of fixed-dimensional vectors. The 
aim is to find a mapping such that the distance between two set 
of vectors which contain the same word/phone is low

❖ Hence, the vectors encode the speech content by retaining the 
important distinguishing features of the word/phone while 
ignoring the variations found in the raw waveform from 
person-to-person

❖ As of now, 2 methods for feature extraction have been studied 
which are discussed in the subsequent slides.



MFCC features
MFCC features are widely used as they replicate 
the sensitivity of the human ear

1.Calculate power spectra of the audio signal (a 
window size of 25 ms and a hop of 10 ms is used 
since it is safe to assume that the frequency 
content of a signal is stationary in this window)

2.Apply the Mel Filterbank to the power spectra 
and sum the energy in each filter

3.Take logarithm of Filterbank Energies

4.Since the above coefficients are correlated, take 
DCT, keep coefficients 2-13, discard the rest

A set of 10 filters is shown 
above. It simulates the 

decreasing sensitivity of the 
human hear to increasing 

frequencies 



Neural Network features
❖ The second approach is to use a neural network (NN) as a feature extractor. The 

input to the neural network is the log Filterbank Energies discussed in the 
previous step (We do not use MFCC since the NN can detect correlations and 
adjust it’s parameters accordingly)

❖ We train the NN to predict the phone present in the central frame

❖ Also, we study the impact of providing a context of ±4 frames as input to the NN. 
This dramatically improves the performance since consecutive frames of speech 
are highly correlated and hence boosts the accuracy

❖ We exploit the phone-level annotations in the TIMIT database by constructing a 
database of (phone_id, features) pair where features are vectors (of dimension 26 
when no context is provided and 26*(4+1+4) = 234 when a context of ±4 frames is 
provided) and phone_id is the phone present in the central frame of the features



Architecture
The output layer consists of 39 nodes, each corresponding to a unique 
phone-folded label

2 different NN architectures are studied:

1. The shallow model consists of 3 hidden layers with 512, 1024 and 512 
nodes in the hidden layers

2. The deeper model consists of 5 hidden layers with 512, 1024, 2048, 1024 
and 512 nodes in the hidden layers

The decision for the number of nodes was arbitrary and chosen since 
increasing-decreasing powers of 2 is a common practice for choosing the 
number of nodes, especially when there is no particular feature of the 
dataset to exploit/drive the decision behind choosing the number of nodes



Phone folding
❖ The original TIMIT dataset contains 61 

phones

❖ We combine some of them into a single 
category to ease the training for the 
NN model

❖ The table on the right indicates which 
phones (in the right column) are 
collapsed into a single category (in the 
left column)

❖ Note that the phone ‘q’ is not used for 
training since it marks a ‘global stop’

❖



Training
❖ A weighted cross-entropy loss function is used since the dataset is skewed towards 

some phones (especially after folding). Weights are inversely proportional to the 
number of training samples of the corresponding phone

❖ During testing, we take the argmax output and check if it matches the ground 
truth phone label. Accuracy is defined as (number of correctly identified phones)/
(total phones tested)

❖ Dropout and ReLU are used to increase performance while BatchNorm and Adam 
optimiser are used to speed up the training

❖ The best model (which is used for feature extraction) is the one which gives 
minimum testing loss since on further training, the model overfits the training 
data. However, testing accuracy was found to remain almost constant despite 
overfitting. The skewed testing dataset could be a plausible reason for the anomaly



Deep NN with no context



Deep NN with ±4 context



Shallow NN with no context



Shallow NN with ±4 context



Comments

From the model loss/accuracy, we can conclude that:

❖ The shallow model with ±4 context is the best 
performing model since it has the lowest minimum test 
loss. The curves are smooth as opposed to the ones for 
the deep model (which indicates model instability)

❖ The models without context are much inferior to the 
ones which are provided context i.e. it fails to predict 
the phones when given one frame at a time



Dynamic Time Warping (DTW)
❖ Once the features of the audio clip and the template are extracted, we 

compare them using DTW

❖ The easiest option is to compute the DTW cost between the two and declare 
that the keyword is present if the cost is below a certain threshold. Euclidean 
distance is being used as a measure of distance between two vectors

❖ However, our clips contain 2-3 words of varying lengths (since it is closer to 
a real-world speech utterance) and hence an absolute threshold for the DTW 
cost is not effective

❖ An adaptive threshold is better because in general, absolute values in speech 
processing are meaningless. Comparing them with some baseline makes 
more sense



Sliding DTW

❖ Let the shape of the clip and the template be (m,d) and (n,d) (d is the dimension 
of our feature vector) . Due to differences in the rate of speech, m ≠ n. (In our 
case, m > n in almost all cases since the clip is a concatenation of 2-3 words)

❖ Assuming a range of (0.5, 2) when it comes to the human speech speed, we fix a 
starting frame (say ’s’) and compute the DTW cost between the template and a 
range of clip lengths (0.5*n to 2*n) and store the minimum of these distances in 
a table called LMD whose key is ’s’ and value is the minimum distance  
i.e. LMD[s] = min (DTW(template, clip[s:s+k])) for k in range(0.5*n to 2*n)

❖ For intuition, if the word we are looking for starts at the 10th frame in the clip, 
then LMD[10] will have the least distance among all other starting frames and 
the varying number of frames it is compared with helps overcome the speech 
rate differences among speakers



Histogram
❖ After obtaining the table of minimum distances, we compute a histogram of the 

distances obtained in the previous step

❖ This is because the histogram of a template with a clip containing the template word, 
has a different shape than the one which does not contain the word we are looking for

Clip with keyword Clip without keyword



Hypotheses
❖ The algorithm works on the hypothesis that when the keyword is 

present in the clip, as compared to when it is absent, the histogram tends 
to have a central peak, larger variance of Euclidean distance and a higher 
occurrence of small distances. You can observe the 3 features in the 
histograms on the previous slide. Also note the absolute value of the 
distances

❖ Since we are interested in smaller distances, we consider the region of 
the histogram to the left of:  
Threshold (TH) = Mode - c*𝞂

❖ We look for values for starting frame ’s’ whose minimum distance  
i.e. LMD[s] <= TH and consider these values of ’s’ for further processing



Finding sequences
❖ For the e.g. given in the slides, the set of frames below threshold 

TH, when keyword is present are [222 223 224 225 226 227 288 289 290 291 292 293 294 295 
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325]

❖ On the other hand, the frames below threshold when keyword is 
not present is an empty set! (Both for c = 1) This is obvious from 
the histogram)

❖ Then, we calculate the sequence of starting and ending contagious 
frames for the set. In our case, it is  
[(222, 227), (288, 325)] when the keyword is present and obviously 
an empty list for the other case since our starting set is anyways 
empty!



Finding sequences (cont.)
❖ Then, we calculate the length of these sequences i.e.[6, 38] and [] for the 

keyword and non-keyword clip

❖ We divide this by the number of template frames (34 in this case) which 
gives [0.17, 1.17] and [] respectively. This is done because for longer 
templates, more number of frames could be below the threshold and hence 
we need to normalise this by taking the ratio (call these values as k_con)

❖  If you listen carefully, the template-containing clip has two utterances of 
‘happy’, the latter one being long and more clear. Hence, more number of 
starting frames match this utterance!

❖ We have a parameter k between (0,1) which decides if the keyword is present 
or not i.e. if k_con >= k, we declare that the keyword is present, else it isn’t



Drawbacks of sliding DTW
❖ One drawback of the sliding DTW 

approach is that it fails when the clip 
and the template are of 
approximately the same length and 
have the same utterance of the word 
(even when the two are the exact 
same files)

❖ The issue is evident in the histogram 
to the right. Note that the absolute 
distance is close to 0 for majority of 
the frames, as a result of which the 
TH goes below 0!

This explains why we split the frame 
into clips containing 2-3 words each 

and not further split them into 
individual word clips. The advantage 

is that we can use simple power-
based analysis to detect the longer 

silences



Testing
❖ We have two parameters to play with: 

c: controls the multiplier with standard deviation in the histogram. We carry out 
experiments for c in the list [0.8, 1.2, 1.6, 2]  
k: controls the adaptive threshold for taking the final decision. The values of k 
chosen for the experiments are [0.2, 0.4, 0.6, 0.8]

❖ Each pair of (c, k) values is considered for the experiment

❖ We generate 15 audio clips and 5 keyword templates; each template is compared 
with each audio clip and the result is categorised into either one of  
 True +ve (TP)/True -ve (TN)/False +ve (FP) /False -ve (FN)  
Precision (TP/(TP+FP)) and Recall (TP/(TP+FN)) are recorded

❖ A good algorithm has both high Precision and high Recall

❖ The results are given in the next slide



Shallow NN without context



Deep NN without context



Shallow NN with ±4 context



Deep NN with ±4 context



MFCC



Comments

❖ From preliminary observations, we can conclude that 
MFCC features give superior performance as compared to 
the NN. Particularly, it is difficult to attain a good Precision 
value with NN features, despite sacrificing on the Recall.

❖ On observing the argmax outputs of the NN, I observed 
many labels which correspond to the ‘pau’ phone class. 
This class contains the maximum number of training and 
testing examples and hence the NN is highly skewed 
towards this class. 



Future steps
❖ Inspired by the dramatic increase in the test accuracy on 

adding context, the next step would be to use a LSTM-based 
feature extractor since a LSTM can automatically learn which 
context to retain and ignore. A fixed number of context frames 
may be suitable for some phones and unsuitable for the others

❖ A ‘confusion matrix’ is shown on the next slide. The shade of 
square (i,j) denotes the proportion of testing samples such that 
the ground truth phone_id was j but phone_id predicted by 
the model was i. So ideally, we should have a perfect diagonal 
with all values 1 and all non-diagonal entries as 0.



Future steps (cont.)

Confusion matrix for the shallow 
model with ±4 context

❖ The plot tells us which two phones are 
difficult to distinguish for the model. 
For e.g. a lot of phones with id=6 ('ch') 
are being confused with id=30 ('sh') 
since the square (30,6) is pretty bright 
and off-diagonal. Makes sense since 
the sounds do sound similar!

❖ Armed with this knowledge, we could 
improve the model by giving more 
such examples for training/increasing 
the weight of the loss for such 
examples, etc.



Future steps (cont.)
❖ Separating the words in audio clips even when there is 

negligible silence between them can help boost the 
accuracy since it is much easier to compare a template 
word with another word, as against a set of words

❖ Another popular variant is the CRNN, which first uses a 
CNN on the spectrogram of the audio, followed by a 
RNN (generally LSTM). Such an architecture can detect 
complex frequency-time trends and may boost the 
accuracy



Thank you!


