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Goals

e Predict degree of prominence for each word in an utterance based on
prosodic features
Important intermediate step in assessing oral reading ability of children
Replace handcrafted features used in [1] with features learnt automatically
by CNN

Plan to use it as a component for DPP task



Overview

DPP goal: Assign a single score for entire
recording

Plan to use Prominence detection as a
component

Transfer learnings from this task to the
main goal
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Dataset

e 807 recordings or 42,100 words -> 52 words per recording on average
e 35unique speakers

ASR -> Forced Alignment -> Following features are extracted for each word:

e 159 acoustic features (RFECV analysis) from previous work
e 17 lexical (PoS, phrasing, prominence structure)
e 12 Pause and Duration

For entire recording: 15 acoustic contours per frame
Target: Number of votes (manually rated): between O and 7

Evaluation: Pearson correlation between predicted and ground truth score



Approach

Only RNN:

e Feedonefeature vector at each time step and ask RNN
to predict regression score
x,- feature vector; y,- scalar normalised score

e Usedonly word level features
e Tried various combinations of groups
E.g. RFECV, lexical, RFECV+lexical, etc.

Findings:

e RFECV performed slightly better than Random Forest
in [1]

e Addinglexical features gives a huge jump in
performance



CNN

Fixed frame context on both sides of centre

Previous word Next word
Have acoustic contours for entire recording

e How do we extract word-level relevant frames as
input to CNN?
e Tried 3 approaches

Fixed word context on both sides of centre e.g. 1 in below case

Typical values: Previous word Next word
1. 30,40
A
3. 15,20

Entire word + variable context on both sides of centre

Previous word Next word




CNN

Features augmented with:

e Positional encoding:
o  1-bit: boolean for current word [2]
o  3-bit: 100 for previous, 010 for current, 001 for next
o  5-bit: pause between words is also considered

e Syllable numbering: Use syllable boundaries and supply 7-d one-hot encoded vector
e Transformer-style positional encoding
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Overall architecture

Separate CNN bank for each group of
acoustic contours

Number of filters per kernel: 8

Kernel widths: 25 and 51
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Training details

All features are normalised
Optimiser: Adam/AdamW with LR = 0.003
NVIDIA GeForce RTX2080 GPU with 12 GB of graphics memory
Batch size: 500 (based on capacity of GPU)
MSE between scaled ground truth (0-7 -> 0-1) and sigmoid output from model is
minimised
e Pearson correlation used as the early stopping metric
Test performance every 8 epochs
If difference below 0.005, test every epoch and early stop on validation
e Mean and standard deviation is reported



Results

s ; o E Table 6: Performance of CNN encoding concatenated with dif-
Table 1: Performance of various models with set of 34 acoustic ferent word-level features as RNN input. (* indicates sd < 0.01

Sfeatures. (* indicates sd < 0.01)

Features | Correlation | F-score

Model | #layers | #units | Correlation | F-score

RFC - - | 0.69* 0.63*
GRU 0.68 0.63
LSTM 0.69 0.63
BGRU 0.70 0.64
BLSTM 0.71* 0.64*

A34 0.70 0.64
CNN 0.69 0.63
CNN + D-P12 + A10 0.71 0.64
CNN + D-P12+ A10+L+1 | 0.77* 0.68
A3d+L+1 0.79* 0.69*
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1. RNNslightly better than RF

Table 2: Performance with addition of lexical and information . . .
structure features. (* indicates sd < 0.01) 2. AddinglL and | gives big boost

3. A34~CNN

Features | Correlation | F-score
A34 | 0.70

A34 + L | 0.75*

A3d+L+1 | 0.79*

Last 2 rows -> still some scope for better CNN




Other experiments

Unlabelled data:

e Added high-confidence RF results on unlabelled recordings to the dataset
Performance dropped

e Speaker embedding:

o  Train aseparate model to predict speaker
Use both labelled and unlabelled data since we only need speaker identity
167-class classification problem
Use bottleneck layer representation as additional feature vector
Performance dropped
Plausible reason: not learning any new features; same as CNN filters

O O O O O



Future scope

Different weight initialisation schemes, random seeds and other DL hacks
Better stopping criterion and training methodologies
Jointly train speaker and main network (Multi-task learning)

Multi-modal attention to weigh CNN embedding, word-level features, lexical, etc.
Semi-supervised and transfer learning for training feature extractors

Deeper CNNs (Conv + ReLU + BatchNorm) with skip connections

Replace RNNs with SOTA models like transformers

Alternate positional encodings
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