
Department of Electrical Engineering
IIT Bombay

EE691: R&D Project

Deep Learning for Prominence Detection
in Children’s Read Speech

Author:
Mithilesh Vaidya (17D070011)

Collaborator:
Kamini Sabu

Guide:
Prof. Preeti Rao

Spring 2020/2021



Abstract

Expressive reading, considered the defining attribute of oral reading fluency, comprises the
prosodic realization of phrasing and prominence. The automatic detection of prominence in speech
has a number of practical applications. In the context of evaluating oral reading, it helps to
establish the speaker’s comprehension of the text. We consider a labelled dataset of children’s
recordings for the speaker-independent detection of prominent words using acoustic-prosodic and
lexico-syntactic features. A previous well-tuned random forest ensemble predictor is replaced by
an RNN sequence classifier to exploit potential context dependency across the longer utterance.
Further, deep learning is applied to obtain word-level features from low-level acoustic contours
of fundamental frequency, intensity and spectral shape in an end-to-end fashion. Performance
comparisons are presented across the different feature types and across different feature learning
architectures for prominent word prediction to draw insights wherever possible.

1 Introduction

The main goal of the project is to predict the degree of prominence for each word in a given utterance,
based on prosodic features. This task is considered as an intermediate step in predicting the oral
reading abilities of children.
An auxiliary goal is to replace the 34-handcrafted features proposed in the journal paper [4] with a
CNN feature extractor which takes as input raw acoustic contours. They are easy to compute. If
such learned filters can attain the same (or better) performance, we can do away with complicated
time-consuming hand-crafted feature extraction.
Note that this report is a short summary of our work which was submitted to Interspeech 2021. Please
refer to [5] for a more detailed analysis.

2 Dataset

We have 807 recordings and a total of 42,100 words, which gives us about 52 words per recording on
average. 35 unique speakers are present in this labelled dataset. For each word, we have the following
hand-crafted features:

• Acoustic (159) from RFECV analysis

• Lexical (17) which include PoS, phrasing and prominence structure

• Pause and duration (12)

For more details about these word-level features, please refer to [4]. Thus, each word will be represented
by a fixed-dimensional vector, depending on which of the above features are chosen.
We also have 15 (normalised and unnormalised) acoustic contours for the entire recording. With the
help of word boundaries derived from forced alignment, we can extract a Ti x 15 matrix of features.
Here, Ti need not be the number of frames in the word. Refer to section 3.2 for more details.
For each word, we have an integer label between 0 and 7 (both inclusive) which serves as the ground
truth during training. These are manual annotations by experts and our goal is to predict these labels.
We trained a regression model by predicting an output between 0 and 1 and scaled it back to the
original scale. One potential future direction is to instead predict a 8-way classification output.

1



3 DNN models

3.1 RNN encoder

We use a simple RNN which takes as input the word-level feature embedding as input. The RNN
output at each time step is fed to a simple feed-forward layer of input dimension H/2H (depending
on whether the encoder is bidirectional) and output dimension 1, which is passed through a Sigmoid
layer to get a final prediction between 0 and 1. We experimented with the popular RNN architectures:
GRU and LSTM. The number of layers and hidden dimension were the two main hyperparameters
which were tuned.

3.2 CNN feature extractor

3.2.1 Input to CNN

Recall from section 2: we have a matrix of acoustic contours for each utterance (call it feat). From the
word boundaries (extracted from forced alignment), one can extract a slice for the ith word depending
on the following schemes (see figure 1):

1. If ci is the centre frame of the ith word, extract the slice feat[ci − k : ci + k]. Depending on the
length of the word, some neighbouring frames might get included if the length of the word < 2k.
Otherwise, we might lose some frames at the beginning and the end. k is a hyperparameter.
Since the maximum length of the word in our dataset is 80, k = 40 is an ideal choice.

2. Let si and ei denote the start and end frame of the ith word. Extract the slice feat[si−k : ei+k].
Such a scheme ensures that the entire word is captured, along with a neighbouring context of k
frames. We tuned the value of k in the range: [10, 15, 25].

3. Let s−k and end+k denote the start frame of the kth preceding word and kth following word
respectively. Extract the slice feat[s−k : e+k]. Thus, the surrounding k words are given as
context.

After extracting the slice, we augment it with the following features:

• Positional Encoding: since the feature slice for our word in focus may contain frames from the
surrounding words, it is essential to distinguish them. We experimented with:

– 1-bit encoding which is 1 for the current word and 0 for the rest as proposed in [6].

– A 3-bit encoding which is 100 for the frames of the previous word, 010 for the current and
001 for the following words.

– 5-bit encoding which is similar to the previous one, except the pauses between words are
also distinguished.

• Syllable numbering: From syllable boundaries, each frame is augmented with a 7-hot encoding
where the ith element is set to 1 if the frames correspond to the ith syllable in the word. The
maximum number of syllables in a word in our dataset is 7.

• We also experimented with a transformer-style encoding [3] which is a continuous extension of
the one-hot encoded version. However, performance degraded substantially.

2



Figure 1: Various schemes for choosing word context, as discussed in section 3.2.1. We have time along
the horizontal axis and features along the vertical. a, b and c refer to schemes 1, 2 and 3 respectively.
Green refers to frames chosen from the current word of interest while frames in yellow denote the ones
from neighbouring words which are included in the feature matrix of the current word.

3.2.2 Architecture

We have 1D convolutional filters of k different widths which slides over the feature slice for each word
and output a Ti x N matrix where Ti is the number of input frames and N is the number of channels
in the filter of a given width. The output is then max-pooled across time to get a N-dimensional
vector for each of the k kernels. The vectors are concatenated to get a single Nk-dimensional encoding
for each word. We tried out various configurations of filter widths: [5, 10, 25, 50] to capture varying
levels of context and [25, 50] to capture only phone and syllable-level context. Since the results were
similar for both, we decided to stick to [25, 50] since it has lower number of parameters. The number
of channels N was varied in the range [8, 16, 32] and we found that 8 gave the best results. The stride
was set to 1 for all filters. The core architecture is similar to that proposed in [7].

Instead of a single filterbank, we also tried splitting the 15 contours in 3 feature groups: pitch (4),
intensity (4) and energy (7). The above architecture is used for each of the feature groups i.e. we get
a Nk-dimensional vector from each of the feature groups, which is further concatenated to get a 3Nk-
dimensional embedding. This splitting of features gave better performance than a single filterbank.
Max-pooling across these 3 Nk-dimensional vectors to get a single Nk-dimensional vector did not give
good performance.

Instead of a single convolutional filter, we also experimented with deeper architectures with the follow-
ing structure: Conv1D, BatchNorm, Activation (Tanh/ReLU). These 3 units were repeated M times
where M is the number of layers and skip connections were used to improve the gradient flow. However,

3



Figure 2: The zoomed in block on the right shows 3 filters of different widths. The result of sliding each
of them across the input feature matrix is max-pooled to get a scalar value. They are concatenated to
get a single Nk-dimensional encoding of the acoustic features. Figure reproduced from [7].

the results were not promising.
The final architecture is given in figure 3.

4 Experiments

4.1 Training Methodology

For a detailed explanation of the train-val-test split, please refer to [4]. All features are normalised by
subtracting the mean and dividing by the standard deviation for each feature across the entire dataset.
We experimented with Adam and AdamW as the optimiser. The learning rate was set to 0.003. No
learning scheduler was used since Adam has an adaptive learning rate for each parameter. But this
can be explored in the future.
MSE loss between the scaled ground truth and the model output was minimised. A batch size of 500
was used, based on the memory capacity of the GPU. Fine-tuning of batch size is a possible direction
for future work. Weights of all layers were initialised according to the default scheme in [2].
Pearson correlation was used as the early stopping metric. We tested the performance of the model
every 8 epochs. As soon as the difference between two consecutive Pearson values dropped below 0.005,
we tested the model after every epoch and stopped training once the performance on the validation
dataset dropped.
We used a single NVIDIA GeForce RTX2080 GPU with 12 GB of graphics memory for all our exper-

4



Figure 3: Figure reproduced from [5].

iments. The training time varied widely. For experiments involving only the word-level features and
the RNN encoder, training on the 4 train folds took less than 120 seconds. On the other hand, after
including the CNN feature extractor, the training time jumps to almost 45 minutes for the 4-fold CV
on the train folds. This jump can be explained by the fact that each word in each utterance is treated
as a distinct sample for obtaining the CNN output. As a result, if the ith utterance has ki words, the
ith batch has ki samples. If M is the total number of utterances in our dataset, we will have M such
batches (807 to be precise). Note that the weights of the CNN are not updated in this step. We are
simply calculating the CNN outputs. Only the end-to-end training of RNN encoder and CNN leads
to weight updates (which has a batch size of 500 as mentioned above).

4.2 Reporting Results

At the end of each experiment, we store all the model hyperparameters (such as hidden dimension,
number of layers, etc.), training parameters (such as learning rate, batch size, etc.), the final result
(such as Pearson correlation) and the timestamp in a JSON file. This helps in proper documentation
and reproducibility. Refer to figure 4 for an example.

5



Figure 4: A JSON file with the column header as hyperparameters. Each row is appended after an
experiment is complete. Note: not all columns are included in the figure.

For comparing models across architectures, we compute the mean and standard deviation of the Pear-
son correlation coefficients across the 4 training folds or 3 test folds. The mean and standard deviation
of this list of results is reported in the table.
Ideally, one should run each experiment multiple times with different random seeds and average out
the results over such runs. We couldn’t do it, owing to time constraints.

4.3 Results

Given below are a few select tables from [5] from which we can draw some important conclusions.

Model # layers # units Correlation F-score
RFC - - 0.69* 0.63*
GRU 2 96 0.68 0.63
LSTM 2 256 0.69 0.63
BGRU 2 96 0.70 0.64
BLSTM 2 256 0.71* 0.64*

Table 1: Performance of various models for a set of 34 acoustic features (chosen from 159 after further
RFECV). * indicates standard deviation < 0.01. Note that BLSTM is the best performing RNN
model but it outperforms the baseline Random Forest Classifier (RFC) by only 0.02 in terms Pearson
Correlation.

Features Correlation F-score
A34 0.70 0.64
A34 + L 0.75* 0.67*
A34 + L + I 0.79* 0.69*

Table 2: Performance with addition of lexical and information structure features. We can see a clear
jump in both correlation and F-score. This indicates that complementary information is being brought
in by the lexical and information structure attributes.

6



Features Correlation F-score
A34 0.70 0.64
CNN 0.69 0.63
CNN + D-P12 + A10 0.71 0.64
CNN + D-P12 + A10 + L + I 0.77* 0.68
A34 + L + I 0.79* 0.69*

Table 3: Performance of CNN encoding concatenated with different word-level features as input.
Although CNN performance is equivalent to the A34 performance (first 2 rows), the 0.02 gap in the
Pearson Correlation between the last 2 rows indicates that there is scope for further improvement for
the CNN feature extractor.

5 Other experiments

5.1 Unlabelled Data

We used the RF classifier from the journal paper to label some more data. Only the high-confidence
outputs were used to generate this dataset. However, on augmenting the labelled dataset with this
new set and training the CNN feature extractor, the model performance dropped.

5.2 Speaker Embedding

We trained a separate neural network to predict the speaker (167-class classification) on both the
labelled and unlabelled dataset (we do not need the ground truth prominence score, only the speaker
identity for each recording). The activations of a bottleneck layer (whose dimension is a hyperparame-
ter) were used as a speaker embedding. Note that this embedding was different for different utterances
of the speaker. This embedding was concatenated with the word-level features and fed to the RNN
encoder. There was no improvement in results.
A plausible explanation: we used the same 15 acoustic contours as input to predict the speaker. It is
possible that the model learned similar filters as compared to the prominence score prediction case.
Moreover, we can always expect some loss of information when we extract the bottleneck activations.
This can be resolved by joint-training of the speaker classification model and the main prominence
detection model. We can have 2 loss functions: MSE for the prominence score and CEL for speaker
classification, which are appropriately weighted. In such cases, both branches can learn complementary
information.

6 Conclusion

In this work, we have presented a deep learning model for predicting the degree of prominence for each
word in a given recording of children’s speech. We experimented with various schemes for providing
context, positional encoding, CNN architectures and training methodologies.
The CNN feature extractor attained similar performance as compared to the hand-crafted features,
which require extensive domain knowledge. This follows the general trend we see in today’s deep
learning landscape: replace hand-crafted features with more sophisticated architectures trained on
more data. In our case, amount of high-quality training data may turn out to be a bottleneck and

7



hence semi-supervised approaches may be worth exploring.
As far as future work is concerned, the following directions seem promising:

• Replace RNNs with convolutional networks like TCNN or whatever the current state-of-the-art
is for sequence-to-sequence models. Also, try models which feed the output yt as input to the
network for calculating yt+1 in an encoder-decoder fashion. Though this should be implicitly
captured by RNNs, an explicit feedback might be more effective.

• Debug why deeper CNNs for acoustic contours failed to give better results. Ample literature
talks about ways to circumvent the gradient issues e.g. skip connections, LayerNorm, etc.

• Unsurprisingly, the positional encoding gave a big jump in performance. Look for better encod-
ings as compared to the simple one-hot encoded versions we’ve implemented.

• Try out different weight initialisation schemes, random seeds and other DL hacks to maximise
performance.

• Jointly train the speaker embedding and prominence detection model as discussed in the previous
section.

• Use multi-modal attention to weight the CNN acoustic features, word-level features, lexical
feature since they all bring complementary information. Refer to [1] for more details

• Look for better stopping criterions and training methodologies in case of limited data.

• Try out classification instead of regression. Softmax probabilities give confidence and hence can
be used for unlabelled data generation (similar to the RF case).

• Study sophisticated semi-supervised learning schemes to exploit unlabelled data more effectively.

8



References

[1] M. S. Grover et al. “Multi-modal Automated Speech Scoring using Attention Fusion”. In: ArXiv
abs/2005.08182 (2020).

[2] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:
Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–
8035. url: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

[3] “Posistional encoding in Transformers”. In: kazemnejad.com (). url: https://kazemnejad.com/
blog/transformer_architecture_positional_encoding/.

[4] Kamini Sabu and Preeti Rao. “Prosodic event detection in children’s read speech”. In: Comput.
Speech Lang. 68 (2021), p. 101200. doi: 10.1016/j.csl.2021.101200. url: https://doi.org/
10.1016/j.csl.2021.101200.

[5] Kamini Sabu, Mithilesh Vaidya, and Preeti Rao. Deep Learning for Prominence Detection in
Children’s Read Speech. 2021. arXiv: 2104.05488 [cs.CL].

[6] Sabrina Stehwien and Ngoc Thang Vu. “Prosodic Event Recognition Using Convolutional Neural
Networks with Context Information”. In: Proc. Interspeech 2017. 2017, pp. 2326–2330. doi: 10.
21437/Interspeech.2017-1159. url: http://dx.doi.org/10.21437/Interspeech.2017-
1159.

[7] Trn Trang et al. “Parsing Speech: a Neural Approach to Integrating Lexical and Acoustic-Prosodic
Information”. In: Jan. 2018, pp. 69–81. doi: 10.18653/v1/N18-1007.

9

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://doi.org/10.1016/j.csl.2021.101200
https://doi.org/10.1016/j.csl.2021.101200
https://doi.org/10.1016/j.csl.2021.101200
https://arxiv.org/abs/2104.05488
https://doi.org/10.21437/Interspeech.2017-1159
https://doi.org/10.21437/Interspeech.2017-1159
http://dx.doi.org/10.21437/Interspeech.2017-1159
http://dx.doi.org/10.21437/Interspeech.2017-1159
https://doi.org/10.18653/v1/N18-1007

	Introduction
	Dataset
	DNN models
	RNN encoder
	CNN feature extractor
	Input to CNN
	Architecture


	Experiments
	Training Methodology
	Reporting Results
	Results

	Other experiments
	Unlabelled Data
	Speaker Embedding

	Conclusion

