
Stable Diffusion
An explosion of interest in Generative AI!

Prompt: Student presenting 
neuroscience data in Georgia

Generated on my local M2 machine in about 45 
seconds using DiffusionBee [4]

- Mithilesh Vaidya, GeorgiaTech



What can it do?

1. Class conditional image synthesis

2. Image in-painting

3. Text-to-image
4. Unconditional image generation

5. Super-resolution

Focus on 3 because most interesting!



History
Year Model Key ideas Shortcomings

2013 VAE Encoder-Decoder + prior 
gives good latents

Blurry images compared to GANs [2] 
due to surrogate loss (ELBO)

2014 GAN Noise -> Decoder -> Image 
+ Discriminator

Notorious to train (mode collapse)

2016 Flow Exact likelihood computation 
using invertible mapping

Specialized architectures for reversible 
transforms

2021 -
Present

DALL-E2, 
Imagen

Diffusion + Text encoder Resource hungry; not feasible on simple 
machines



Stable Diffusion: Overview

Image from [1]



Text Encoder

● Goal is to encode relevant details in the prompt into numbers
● How? Transformer language model (of course!)

○ Paper uses BERT (only text)

○ Released model uses ClipText (text component of Contrastive Language-Image Pre-training 

or CLIP by OpenAI)

● Larger language models do better (shown by Imagen, Google’s generative 

text-to-image model)



How is CLIP trained?

● Take database of image and their captions

● Encodings of text and image of pair should 

be close (cosine similarity)

● Why is CLIP better?

-> It has information more fine-tuned for our 

task, as opposed to generic pre-trained LLMs

Frozen for our task

Image from [1]



Stable Diffusion: Overview

Image from [1]



Image Information Creator
● Forget text for now
● Start with random noise
● Denoise it using UNet 

iteratively
● Run for a fixed number of 

steps (hyperparameter)
● Compare with GAN, which 

does one shot generation 
using some decoder -> very 
ambitious

● Works purely in latent 
space (and not pixel space)Image from [1]



Image Information Creator

● Decode it to track 
sample inside latent 
space!

● Sudden jump from 2 to 
4!

Image from [1]



Diffusion: What

How do we train the denoiser?
Diffusion!

● Take an image
● Add noise to it from some 

distribution (Gaussian in SD)
● Keep doing it for some fixed number 

of steps
● Garbage at the end

Image from [1]



Diffusion: What
● Start with clean image X(0)

● Add noise N(t) at time t

● Create dataset with:
○ Input: X(t+1), t

○ Output: N(t)

● UNet predicts noise gained in that step

● Need to also track step number

Why? Indicates ‘stage’ we are in

Image from [1]



Inside the UNet

Image from [1]



More details

● UNet because we have a encoder-decoder 

style bottleneck

● Skip connections help get rid of max pooling

● Sinusoidal timestep embedding

Image from U-Net: Convolutional Networks for Biomedical 
Image Segmentation

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/


Diffusion: Why?

● Start with random noise

● Denoise iteratively using UNet

● If trained properly, image fidelity should 

improve at each step!

● Diffusion at the core of both Dall-E 2 and 

Google Imagen!

Image from [1]



More on Diffusion

From What are Diffusion 
Models? | Lil'Log

Backward process 
parameterized by NN

Forward process

From [2]

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Diffusion Loss

[Can be proven using Jensen’s]

● L_T: can be ignored since q has no learnable params & x_T is Gaussian noise
● q(x_{t-1}|x_t, x_0) can be computed in closed form: 

Intuitively makes sense since we know starting point
-> L_{t-1} can be computed using closed form since both Gaussians

From [2]



Diffusion Loss

● It turns out that:

● So, instead of predicting the entire mean, we only predict the noise, making the task easier 
since we know x_t

● Covariance is only a function of alphas and betas (known beforehand):

From [2]



Summary

Q. Surrogate loss! Why is it better than VAEs?

From [2]



Condition on text

● We don’t want to 

generate any image; it 

should correspond to 

the text

● Condition on encoded 

prompt using 

Cross-Attention

From [1]



Cross-Attention
What:

● Way to combine information from two 
sequences A and B (could be of different 
lengths)

● Called self-attention when A = B
● A: Query

E.g. video of ‘cat’
● B: Key and Values

E.g. ‘title’ and ‘video id’

Generic: can be done for any modalities!
E.g. Text and Image in our case



Cross-Attention
In our case:

● Q = image  [what to retrieve]

● K = 𝛕(y)

● V = 𝛕(y)

According to me, Q should’ve been 𝛕(y) and K, V should’ve been image?

● Map y (prompt) to an intermediate representation 𝛕 (using CLIP in our case)

● Phi(z_t) obtained by flattening the latent

From [3]



Image Decoder

From [1]



Image Decoder
● During training, we 

need image latent to 

start with

● How do we obtain it?

-> Autoencoder! 

● Downsample by factor f 

along both dims

● 2 types of penalties:
○ KL-reg (standard)

○ VQ-reg
From [1]



Putting it together

From [3]



Evaluation Metrics

Fréchet inception distance (FID): 

● Take set of real images X and generated images Y
● Extract output of penultimate layer of pre-trained InceptionV3
● X = {x_1, x_2, …}, Y = {y_1, y_2, …} where r_i and g_j are 2048-dimensional 
● Fit Gaussians for both
● Fréchet distance between both (Why Frechet? IS uses KL-div)

Intuition:

● Mean - Close to real space
● Only mean -> collapse -> need diversity -> 2nd term



Perceptual vs Semantic compression

● A lot of bits required to encode 

imperceptible details

● Think of JPEG compression: high frequency 

components can be left out!

● Similarly, we want to be close to the 

transition point of the graph

From [3]



Results

LDM-f: downsample by in autoencoder

● High factor - low FID initially but stagnates 

due to information loss

● Low factor - slow training

Don’t know why overall loss is lower though; 

could decrease if run for more steps as slope 

is not zero, unlike lower ones

From [3]



Results

● DDIM steps: denoising diffusion 

implicit model - faster way of 

sampling

● Can compare steps across models 

using this

● Comparable performance with 

25% parameters!
From [3]



Takeaways

● Main contribution: Diffusion in Latent Space (not pixel space) -> heavy speedup

Can run on simple machines (such as mine)

● Lots of sampling strategies

● Sequential sampling -> slower than GANs

● Fully open source implementation + weights (unlike Imagen and DALL-E2)

● Can do much more:
○ Image in-painting

○ Super-resolution

● What does Stable in Stable Diffusion refer to? The company Stability AI?



Resources

[1] The Illustrated Stable Diffusion – Jay Alammar

[2] Weng, Lilian. (Jul 2021). What are diffusion models? Lil’Log. 
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

[3] Rombach, Robin, et al. "High-resolution image synthesis with latent diffusion models." Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition. 2022.

[4] GitHub - divamgupta/diffusionbee-stable-diffusion-ui: Diffusion Bee

Helpful:  The Annotated Diffusion Model

https://jalammar.github.io/illustrated-stable-diffusion/
https://github.com/divamgupta/diffusionbee-stable-diffusion-ui
https://huggingface.co/blog/annotated-diffusion

