Stable Diffusion

An explosion of interest in Generative AI!

- Mithilesh Vaidya, GeorgiaTech

Prompt: Student presenting neuroscience data in Georgia

Generated on my local M2 machine in about 45 seconds using DiffusionBee [4]

What can it do?

- 1. Class conditional image synthesis
- 2. Image in-painting
- 3. Text-to-image
- 4. Unconditional image generation
- 5. Super-resolution

Focus on 3 because most interesting!

History

Year	Model	Key ideas	Shortcomings	
2013	VAE	Encoder-Decoder + prior gives good latents	Blurry images compared to GANs [2] due to surrogate loss (ELBO)	
2014	GAN	Noise -> Decoder -> Image + Discriminator	Notorious to train (mode collapse)	
2016	Flow	Exact likelihood computation using invertible mapping	Specialized architectures for reversible transforms	
2021 - Present	DALL-E2, Imagen	Diffusion + Text encoder	Resource hungry; not feasible on simple machines	

Stable Diffusion: Overview

Text Encoder

- Goal is to **encode relevant details** in the prompt into **numbers**
- How? Transformer language model (of course!)
 - Paper uses BERT (only text)
 - Released model uses ClipText (text component of Contrastive Language-Image Pre-training or CLIP by OpenAI)
- Larger language models do better (shown by Imagen, Google's generative text-to-image model)

How is CLIP trained?

- Take database of image and their captions
- Encodings of text and image of pair should be close (cosine similarity)
- Why is CLIP better?
 - -> It has information more fine-tuned for our task, as opposed to generic pre-trained LLMs

Frozen for our task

Stable Diffusion: Overview

Image Information Creator

Image from [1]

- Forget text for now
- Start with random noise
- Denoise it using UNet iteratively
- Run for a fixed number of steps (hyperparameter)
- Compare with GAN, which does one shot generation using some decoder -> very ambitious
- Works purely in latent space (and not pixel space)

Image Information Creator

• Decode it to track sample inside latent space!

• Sudden jump from 2 to 4!

Diffusion: What

Image from [1]

How do we train the denoiser? Diffusion!

- Take an image
- Add noise to it from some distribution (Gaussian in SD)
- Keep doing it for some fixed number of steps
- Garbage at the end

Diffusion: What

	DATAS	SET	MODEL
INF Step	PUT Image	OUTPUT / LABEL Amount of noise gained in the step	
3			
14			
7			Noise
42			Predictor
2			(UNet)
21			
4			
37			

- Start with clean image X(0)
- Add noise N(t) at time t
- Create dataset with:
 - Input: X(t+1), t
 - Output: N(t)
- UNet predicts noise gained in that step
- Need to also track step number Why? Indicates 'stage' we are in

Inside the UNet

More details

- UNet because we have a encoder-decoder style bottleneck
- Skip connections help get rid of max pooling
- Sinusoidal timestep embedding

Image from <u>U-Net: Convolutional Networks for Biomedical</u> Image Segmentation

Diffusion: Why?

Image Generation by Reverse Diffusion (Denoising)

- Start with random noise
- Denoise iteratively using UNet
- If trained properly, image fidelity should improve at each step!
- Diffusion at the core of both Dall-E 2 and Google Imagen!

More on Diffusion

$$q(\mathbf{x}_{t}|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_{t}; \sqrt{1 - \beta_{t}}\mathbf{x}_{t-1}, \beta_{t}\mathbf{I}) \quad q(\mathbf{x}_{1:T}|\mathbf{x}_{0}) = \prod_{t=1}^{T} q(\mathbf{x}_{t}|\mathbf{x}_{t-1})$$
Use variational lower bound
$$(\mathbf{x}_{T}) \longrightarrow \cdots \longrightarrow (\mathbf{x}_{t}) \xrightarrow{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} (\mathbf{x}_{t-1}) \longrightarrow \cdots \longrightarrow (\mathbf{x}_{0})$$
From What are Diffusion
$$\frac{1}{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})} \xrightarrow{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})} (\mathbf{x}_{t-1}) \xrightarrow{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})} (\mathbf{x}_{t-1}) \xrightarrow{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})} (\mathbf{x}_{t-1}) \xrightarrow{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})} (\mathbf{x}_{t-1}|\mathbf{x}_{t}) \xrightarrow{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})} (\mathbf{x}_{t-1}|\mathbf{x}_{t}) \xrightarrow{q(\mathbf{x}_{t-1}|\mathbf{x}_{t})} (\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t}, t))$$
From [2]

Diffusion Loss

$$\text{Let } L_{\text{VLB}} = \mathbb{E}_{q(\mathbf{x}_{0:T})} \Big[\log \frac{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})} \Big] \geq -\mathbb{E}_{q(\mathbf{x}_{0})} \log p_{\theta}(\mathbf{x}_{0}) \qquad \text{[Can be proven using Jensen's]}$$
$$= \mathbb{E}_{q}[\underbrace{D_{\text{KL}}(q(\mathbf{x}_{T} | \mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t=2}^{T} \underbrace{D_{\text{KL}}(q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}))}_{L_{t-1}} - \log p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})]$$
From [2]

- L_T: can be ignored since q has no learnable params & x_T is Gaussian noise
- $q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)$ can be computed in closed form: Intuitively makes sense since we know starting point $q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0), \tilde{\boldsymbol{\beta}}_t \mathbf{I})$ -> L_{t-1} can be computed using closed form since both Gaussians

Diffusion Loss

$$egin{aligned} \mathbf{x}_t &= \sqrt{lpha_t} \mathbf{x}_{t-1} + \sqrt{1-lpha_t} oldsymbol{\epsilon}_{t-1} \ &= \sqrt{lpha_t} lpha_{t-1} \mathbf{x}_{t-2} + \sqrt{1-lpha_t} lpha_{t-1} oldsymbol{ar{\epsilon}}_{t-2} \ &= \dots \ &= \sqrt{ar{lpha}_t} \mathbf{x}_0 + \sqrt{1-ar{lpha}_t} oldsymbol{\epsilon} \end{aligned}$$

• It turns out that:

$$\mu_{\theta}(\mathbf{x}_{t},t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t},t) \right)$$

$$= \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}$$

$$Thus \, \mathbf{x}_{t-1} = \mathcal{N}(\mathbf{x}_{t-1}; \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t},t) \right), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t},t))$$

- So, instead of predicting the entire mean, we only predict the noise, making the task *easier* since we know x_t
- Covariance is only a function of alphas and betas (known beforehand):

$$ilde{eta}_t = 1/(rac{lpha_t}{eta_t} + rac{1}{1-ar{lpha}_{t-1}}) = 1/(rac{lpha_t - ar{lpha}_t + eta_t}{eta_t(1-ar{lpha}_{t-1})}) = rac{1-ar{lpha}_{t-1}}{1-ar{lpha}_t} \cdot eta_t$$

From [2]

Summary

Algorithm 1 Training	Algorithm 2 Sampling	
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0	

From [2]

Q. Surrogate loss! Why is it better than VAEs?

Condition on text

- We don't want to generate any image; it should correspond to the text
- Condition on encoded prompt using Cross-Attention

Cross-Attention

What:

- Way to combine information from two sequences A and B (could be of different lengths)
- Called self-attention when A = B
- A: Query E.g. video of 'cat'
- B: Key and Values E.g. 'title' and 'video id'

Generic: can be done for any modalities! E.g. Text and Image in our case

Cross-Attention

In our case:

- Q = image [what to retrieve]
- $K = \tau(y)$
- $V = \tau(y)$

According to me, Q should've been $\tau(y)$ and K, V should've been image?

- Map y (prompt) to an intermediate representation τ (using CLIP in our case)
- Phi(z_t) obtained by flattening the latent

$$Q = W_Q^{(i)} \cdot arphi_i(z_t), \; K = W_K^{(i)} \cdot au_ heta(y), \; V = W_V^{(i)} \cdot au_ heta(y)$$

From [3]

Image Decoder

From [1]

Image Decoder

From [1]

- During training, we need image latent to start with
- How do we obtain it?
 -> Autoencoder!
- Downsample by factor f along both dims
- 2 types of penalties:
 - KL-reg (standard)
 - VQ-reg

Putting it together

From [3]

Evaluation Metrics

Fréchet inception distance (FID):

- Take set of real images X and generated images Y
- Extract output of penultimate layer of pre-trained InceptionV3
- $X = \{x_1, x_2, ...\}, Y = \{y_1, y_2, ...\}$ where r_i and g_j are 2048-dimensional
- Fit Gaussians for both
- Fréchet distance between both (Why Frechet? IS uses KL-div)

Intuition:

- Mean Close to real space
- Only mean -> collapse -> need diversity -> 2nd term

$$\mathrm{FID} = ||\mu_X - \mu_Y\,||^2 - \mathrm{T}\,r(\sum_X + \sum_Y\,-2 \quad \sum_X\sum_Y)$$

Perceptual vs Semantic compression

- A lot of bits required to encode imperceptible details
- Think of JPEG compression: high frequency components can be left out!
- Similarly, we want to be close to the transition point of the graph

Results

LDM-f: downsample by in autoencoder

- High factor low FID initially but stagnates due to information loss
- Low factor slow training Don't know why overall loss is lower though; could decrease if run for more steps as slope is not zero, unlike lower ones

Results

Text-Conditional Image Synthesis							
Method	$\mathrm{FID}\downarrow$	IS↑	Nparams				
CogView [†] [17]	27.10	18.20	4B	self-ranking, rejection rate 0.017			
LAFITE [†] [109]	26.94	26.02	75M				
GLIDE* [59]	12.24	-	6B	277 DDIM steps, c.f.g. [32] $s = 3$			
Make-A-Scene* [26]	11.84) — (4B	c.f.g for AR models [98] $s = 5$			
LDM-KL-8	23.31	$20.03{\scriptstyle\pm 0.33}$	1.45B	250 DDIM steps			
LDM-KL-8-G*	12.63	$30.29{\scriptstyle\pm0.42}$	1.45B	250 DDIM steps, c.f.g. [32] $s = 1.5$			

From [3]

- DDIM steps: denoising diffusion implicit model - faster way of sampling
- Can compare steps across models using this
- Comparable performance with 25% parameters!

Takeaways

- Main contribution: Diffusion in Latent Space (not pixel space) -> heavy speedup Can run on simple machines (such as mine)
- Lots of sampling strategies
- Sequential sampling -> slower than GANs
- Fully open source implementation + weights (unlike Imagen and DALL-E2)
- Can do much more:
 - Image in-painting
 - Super-resolution
- What does *Stable* in Stable Diffusion refer to? The company Stability AI?

Resources

[1] The Illustrated Stable Diffusion – Jay Alammar

[2] Weng, Lilian. (Jul 2021). What are diffusion models? Lil'Log. https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

[3] Rombach, Robin, et al. "High-resolution image synthesis with latent diffusion models." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

[4] GitHub - divamgupta/diffusionbee-stable-diffusion-ui: Diffusion Bee

Helpful: The Annotated Diffusion Model