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1 Introduction

The SIRD model is an extension of the SIR model [10], which was developed
for studying the spread of infectious diseases. It is a simple model yet has
been proven to be very effective for studying the outbreak of various diseases.
According to this model, each person is categorised into exactly one of four
classes:

• Susceptible (S): Can get infected if the person is in contact with an
infectious person.

• Infectious (I): Infected with the disease. Such a person can transmit
the disease to susceptible individuals during contact.

• Recovered (R): Recovered from the disease. For simplicity, we do not
consider reinfections.

• Dead (D): RIP

Most literature mainly focuses on SIR since D can be easily introduced as
an additional independent transition from I to D without disturbing the rest
of the equations.

1.1 Equations

The SIRD model consists of the following set of equations:

dS

dt
=
−βSI
N

dI

dt
=
βSI

N
− (γ + δ)I

dR

dt
= γI

dD

dt
= δI

(1)
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• S, I, R and D indicate the number of nodes in each of the categories.

• N = S + I +R refers to the total population, which is assumed to be
constant (reasonable if D is not very high).

• β, γ and δ are the transmission rate, recovery rate and death rate
respectively. They are constant throughout our analysis.

• Note that various versions of the SIR model can be found in literature
which incorporate some more phenomenon e.g. including the natural
birth rate and death rate. We stick to the simplest version for ease of
analysis.

Observe:

• The equations for S and I are coupled, which complicates the mathe-
matical analysis.

• β is the the probability that an infectious person will transmit the
disease to a susceptible person during contact. This parameter depends
on the disease e.g. COVID-19 will have a very high β. Assuming
random mixing, I

N is the probability of a susceptible person coming in

contact with an infected person. Hence, βSIN is the average number of
S to I transitions.

1.2 Dynamics

According to the system of equations, the disease will always die out i.e.
I∞ = 0 because:

• We have assumed a closed system i.e. no new nodes are added to our
system.

• Recovered cannot get reinfected.

If any of the above assumptions are violated, the disease may persist by re-
maining in equilibrium with either new nodes which are added to the system
or recovered nodes getting reinfected or both.

In literature, we find a threshold called the Basic Reproduction Number,
denoted by R0. It can be interpreted as the average number of susceptible
people infected by a single individual over time. It is determined by the
parameters β, γ and δ. Consider the 2 cases:
R0 > 1: it leads to an epidemic i.e. a significant chunk of the population
gets infected.
R0 6 1: the disease dies out without affecting a large fraction of the pop-
ulation.
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[14] contains a mathematical analysis for derivingR0 from the basic SIR/SIRD
equations. For our model, it can be shown that

R0 =
β

γ + δ

We can get an intuitive feel for this expression by observing that β is the
rate at which nodes get infected and γ + δ is the rate at which nodes exit
the infected phase (by either recovery or death). If R0 > 1, more nodes are
entering the infected phase than nodes which are exiting =⇒ there will be
an explosion in the number of infected nodes. We can similarly reason for
the case R0 < 1.

1.3 Simulations

I tried out some basic simulations by integrating the SIRD equations (1)
using scipy.integrate. The total population size (N) is 100 and we start out
with only one infected node.The parameters β, γ and δ are varied and its
effects are observed in figure 1.

1.4 Estimation of parameters

• Estimating β, γ and δ is not trivial.

• [4] uses machine learning to estimate the parameters for the spread of
COVID in Italy.

• A simple SIRD model is set up and the dynamics are computed.

• MSE between predicted and observed data is minimised using grid
search and other ML techniques to find the best parameter set.

2 Network Models

By assuming I
N as the probability of a S node coming in contact with a I

node, we have assumed random mixing i.e. any person can interact with
any other person. This is not true in real life.
Incorporating a network topology constrains the spread of disease and results
in a more realistic modelling of the disease spread.
To incorporate this effect, we assume a graph with the following properties:

• Each person corresponds to a node/vertex of the graph.

• An edge between 2 nodes indicates that the two people are in contact
and hence the disease can spread through this contact.

• Static: Although we come across new people every now and then, it
will further complicate our analysis. Hence, we assume that the graph
is static.
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(a) R0 > 1: We can observe a peak in infections

(b) R0 = 1: Limiting case. Infections dies out

(c) R0 < 1: Infection dies out quickly

Figure 1: Simulation results for various cases of R0.
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• Undirected: the infection can be transmitted in both directions.

Literature is replete with various topologies. Each topology models a partic-
ular property of the interactions observed in the real world. A comprehensive
survey can be found in [9]. A few properties which need to be considered:

• Degree distribution: Degree refers to the number of neighbours of a
node. The distribution of these degrees reflects the variability in how
humans interact with each other in society.

• Distance: Average number of nodes between any 2 nodes. Human
networks follow the small world property i.e. a vast majority of
nodes are reachable in very few hops.

• Clustering: How dense the network is. Humans tend to have maximum
interaction within a small group of nodes, which gives rise to clusters.

Refer to [11] for more properties of network models.

2.1 Examples of network topologies

An extensive survey of various topologies has been carried out in [9]. Given
below are a few select topologies. Images from [9].

2.1.1 Erdos-Renyi [6]

Figure 2: ER graph

• Any 2 nodes are connected with a probability p independently of
other nodes.

• Degree distribution is binomial and it tends to Poisson for large number
of nodes
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• Average path between any two nodes is short - representative of
human contact.

• Low clustering is observed, which is not representative of human
contact as discussed previously.

2.1.2 Lattice

Figure 3: Lattice

• A lattice is a highly localised grid-like network.

• Average path length is high.

• Interactions are more localised than the ER graph and hence cluster-
ing is high.

• Ample literature on Percolation Theory can help in analysis. [3] uses
a lattice as the underlying topology for studying SIR evolution.

2.1.3 Barabási–Albert [1]

• Distribution of nodes follows a power law:
number of nodes with degree k = N(k) ∝ k−γ .

• It can be generated using Preferential Attachment:
Higher the degree of a node =⇒ Higher the chances of a new node
forming an edge with it.

• The Internet can be modelled using such a topology.
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Figure 4: Barabási–Albert

2.1.4 Watts-Strogatz [13]

Figure 5: Watts-Strogatz

• A ring lattice gives rise to clustering.

• Random skip connections reduces the average distance between any
two nodes.

• Since both the above properties are representative of human contact,
I used this model for further analysis.
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3 Simulations

3.1 Setup

The aforementioned SIRD equations are no longer valid since we need to
also incorporate the network topology. A thorough mathematical analysis is
very difficult (sometimes intractable) due to:

1. Coupling of the S and I equations.

2. Incorporation of the underlying topology.

To get a feel for the evolution of the model, I first simulated it in Python.
A library called NetworkX [12] was used to to store the graph structure.
Results were averaged out over multiple random seeds to reduce variance.
At each time step t, every node changes state according to the following
state transition diagram:

Figure 6: State machine for each node

Here, frac denotes the number of infected neighbours of the node and
hence the network topology dictates this factor.
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3.2 Results

Figure 7: The Watts-Strogatz topology which was used for the simulations.
N : population, k : number of neighbours, p: probability of rewiring i.e.
change a neighbourhood edge to a random edge

Figure 8: The infection rate is varied in this experiment. As expected, higher
the infection rate, higher the # infected nodes, higher the deaths
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[8] is an extensive study of COVID-19 in the city of Mumbai. They simulated
a complicated model with various features such as different death rates for
different age groups, different transmission rates in different environments,
etc. Policy recommendations for lifting the lockdown are proposed purely
based on the simulation results.

4 Towards a Mathematical Analysis

In [5, 7], the network topology is incorporated and thresholds are derived in
terms of the adjacency matrix and it’s properties.
[2] uses a branching process to study the spread with a household model as
the underlying network topology. In a household model, each node is a part
of a cluster (which is akin to a house, where there is interaction between
all nodes). Additionally, there are some random skip connections from one
household to the other, which models other social interactions. Methods for
calculating the probability of a major outbreak, given few initial infectives,
and the expected proportion of the population which is ultimately infected
by a major outbreak are discussed.
Note that both analysis deal with the asymptotic behaviour of the system
i.e. the total number of infected nodes as t→∞.
However, the actual dynamics are very crucial since they can help in plan-
ning a response e.g. hospitals will be overworked if the peak number of
infected nodes exceeds the capacity.
I tried my hand at calculating a closed-form expression for the exact dynam-
ics. I could come up with 2 approaches:

4.1 Markov Chains

Assume a SIR model for simplicity purposes.

1. We can construct a Markov Chain with 3N nodes where N is the total
number of nodes. Each state corresponds to a unique configuration of
the world.
e.g. Let N = 2. Node 1 can be either S, I or R and similarly for node
2. The cross product gives us 9 total possible configurations of the
world i.e. SS, SI, SR, IS, II, IR, RS, RI, RR. Name these states as
s0, s1, ..., s8.

2. We can extract the state of each node from the state number sn using
modular arithmetic. The function Si(sn) returns the state of node i
when the world is in state sn. Let 0 denote S, 1 denote I and 2 denote
R. For N nodes,
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SN (sn) = sn%3

SN−1(sn) = (sn/3
1)%3

SN−2(sn) = (sn/3
2)%3

...

S1(sn) = (sn/3
N−1)%3

Here, / denotes integer division.

3. We can then construct the one-step transition matrix T by using the
state of each node, parameters β, γ and δ and the adjacency matrix
of the network A. For each transition, consider each node and extract
the initial and final state. Then calculate the transition probability
using the state machine in figure 6. We can simply take the product
of the transition probabilities of each node as the Markov Chain state
transition probability.

4. Obtain t-step transition probability matrix T t.

We now have distribution of world over all states at time t. Hence, we can
calculate the expected number of nodes in each category at each time step.

Limitations:

• There is no straightforward closed form expression.

• It does not scale with the number of nodes due to the exponential
number of nodes in the Markov Chain.

One property which we haven’t exploited is symmetry. Instead of modelling
each configuration as a different state of the Markov Chain, we can come
up with some other formulation which is not so fine-grained. We are not
particularly interested in the state of each node at each time step; all we
care about is the total number of nodes in each of the 3 (or 4, if we consider
SIRD) categories. Hence, any formulation which directly deals with the
number of nodes in each time step might make it more scalable. Symmetry
refers to the fact that no node is special and in average case analysis, we can
collapse many states of the Markov Chain into one single state.

4.2 Linear Algebra

Let St be a random vector of dimension N.
Sti = 1 if node i is susceptible at time t and 0 otherwise.
Similarly, we have It, Rt and Dt for time t. Therefore, exactly one of

11



Sti , I
t
i , R

t
i, D

t
i is 1 and the remaining three are 0.

A few definitions:

• A is the adjacency matrix of size NxN if there are N nodes in the
graph.

• B(v) is a Bernoulli operator which operates on each element vi of a
d-dimensional vector v in the following way:

B(v) = [Ber(v1), Ber(v2), ..., Ber(vd)]
T

Here, Ber(a) is a Bernoulli random variable with parameter a.

• ⊗ denote the element-wise product/Hadamard product.

• Define Kt = B
(
βAIt

k

)
• If the degree of each node is a constant k (which is the case with the

Watts-Strogatz model), the ith element of the vector AIt

k refers to the
fraction of infected nodes in the neighbourhood of node i. This is the
crucial term which incorporates the network topology into our system
of equations. If degree of each node is not the same, we can calculate
it as: A1 where 1 is a N-dimensional vector of all ones.

Consider the following system of equations:

St+1 = St ⊗
(
1−Kt

)
It+1 = It + St ⊗Kt − B

(
γIt + δIt

)
Rt+1 = Rt + B

(
γIt

)
Dt+1 = Dt + B

(
δIt

)
Base cases:
I0 = [1, 0, ..., 0]T i.e. without loss of generality, we assume that only the first
node is infected.
S0 = [0, 1, ..., 1]T i.e. all nodes except the first node are susceptible.
R0 = D0 = [0, 0, ..., 0]T i.e. no node is in the recovered/dead state.

Some properties of the system which make it difficult to obtain a closed-
form expression:

1. Matrix and vector products.

2. The element-wise multiplication operator.

3. Recursive formulation.

4. The Bernoulli operator which makes it a non-deterministic system.

Since we only care about the average case analysis, we could somehow use
expectation to eliminate the probabilistic B(.) operator.
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5 Conclusion

We discussed the famous SIR model which can be used to model the out-
break of a disease. Then, the need for an underlying network topology was
discussed and a few famous models along with their properties were briefly
mentioned. Finally, we tried our hand at obtaining the exact dynamics of
the system. However, the task of obtaining a closed-form expression for
the exact dynamics in terms of the adjacency matrix for any general graph
proved to be too ambitious.
Future work can build on the two approaches by considering various special
cases:

• A special graph structure with desired properties which can simplify
the equations.

• Instead of the exact dynamics at each time step, one could solve the
equations for obtaining only the global optimum e.g. estimating the
peak of infected nodes.

Code for all the experiments can be found here.
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